亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electrospinning spinneret: A bridge between the visible world and the invisible nanostructures

静电纺丝 纳米结构 制作 材料科学 纳米技术 纳米材料 纳米纤维 多孔性 模板 复合材料 聚合物 医学 病理 替代医学
作者
Wenliang Song,Yunxin Tang,Cheng Qian,Bumjoon J. Kim,Yaozu Liao,Dehai Yu
出处
期刊:The Innovation [Elsevier]
卷期号:4 (2): 100381-100381 被引量:16
标识
DOI:10.1016/j.xinn.2023.100381
摘要

Fabricating novel structures allows for the development of innovative technologies in nanoscience. The methods to fabricate nanomaterials can be categorized based on the key elements determining the final structures of the materials. Electrospinning exhibits unparalleled advantages in the fabrication of nanofiber-based structures by benefitting from the effective interactions between the electrostatic energy and working fluids on a spinneret. As a convergence point of fluids and energy, the structure of the spinneret nozzle plays an important role in the working process and the resulting quality of the fibrous structures.1Xue J. Wu T. Dai Y. Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications.Chem. Rev. 2019; 119: 5298-5415Crossref PubMed Scopus (2093) Google Scholar The appropriate design and application of the multiple-channel spinneret can provide effective strategies to duplicate complicated structures in the visible world to the “invisible” nanoscale, which can stimulate new types of bionic approaches and promote the development of nanomaterials and nanodevices with even smaller (picotechnology), more orderly (array), and more complex structures compared with those of the existing materials. Conventionally, the electrospinning spinneret is solely a single hollow metal capillary where, on its top, the spherical droplet could evolve into the Taylor cone under applied direct current or alternating current. However, conventional spinnerets often result in solid fibers with all compositions mixed in the filament-forming matrix. Although they may be exploited as templates for further fabrication, it is difficult to directly control the inner porosity, morphology, and structure of fiber materials with the single hollow syringe-based spinneret. The emerging applications in catalysis, energy storage/conversion, environmental and biomedical areas require the fiber materials to not only contain two or more types of polymer solutions but also to incorporate nonpolymeric materials such as metal oxides, ceramics, semiconductor materials, and drugs. Thus, the fibers produced by the conventional spinneret often have limited application in these areas. Along with the fast development of materials science and technology in this nano era, electrospinning faces new challenges such as accurate manipulation of the inner structures of nanofibers and their related properties. The key lies in the spinneret, which is a template for duplicating complex nanostructures from the macrostructure of its nozzle. Bionic design is an ancient yet contemporary discipline that has been developed based on bionics and design. Bionic design consists of imitating the unique skills of living things and designing products or solving problems using biological structures and functional principles in mechanical design. Technology transfer between life forms and manufactured objects is desirable, and using a feature of an animal or a plant in the design of an electrospinning spinneret may achieve unintended possibilities. The bionic design of the electrospinning spinneret can be observed in the electrospinning systems (Figure 1). Traditional uniaxial electrospinning with a hollow spinneret uses a syringe and a needle, whereas the original design of the syringe and needle is assumed to have been inspired by animal bladders and goose feathers, respectively. With the development of electrospinning technology, the use of a coaxial needle renders electrospinning a powerful fabricating method, enabling the creation of nanofibers from materials that are not spinnable or that have a core sheath, as well as other types of structures.2Loscertales I.G. Barrero A. Guerrero I. Cortijo R. Marquez M. Gañán-Calvo A.M. Micro/Nano encapsulation via electrified coaxial liquid jets.Science. 2002; 295: 1695-1698Crossref PubMed Scopus (898) Google Scholar Various templates that can be mimicked are available in nature. From studying the cross-section of hollow bamboo, a spinneret consisting of two coaxial capillaries with different diameters can be developed. During electrospinning with heavy mineral oil as the inner core and PVP/Ti(OiPr)4 as the outer shell, hollow TiO2 tubular fibers can be obtained. Using this approach, a core-shell nanofiber or tubular fiber is prepared; however, creating artificial versions of multichannel tubular natural formations at the micrometer to nanometer scale remains a challenge. Mimicking the shape of razor clams renders the realization of nanowire-in-tube morphology feasible. With the design of three coaxial stainless-steel capillaries with different inner diameters, the inner, middle, and outer fluids can be separately fed. This design allows the separation of the outer and inner fluids of the TiO2 precursor (Ti(OBu)4 sol and ethanol solution) owing to the presence of the middle fluid of the liquid spacer layer (paraffin oil/water emulsion). In this process, the conductive exterior fluids can be stretched by an electrostatic force owing to charge repulsion when a high voltage is applied to the entire spinneret, and the middle and inner fluids are also collectively lengthened by the shear pressure. After calcination to remove organics, the TiO2 nanowires are obtained in the TiO2 tube. Therefore, inorganic structures can be successfully fabricated, and organic polymer composites composed of a polyacrylonitrile inner wire with an outer polystyrene shell can also be successfully generated. The shape of a pig snout would have been an unlikely inspiration for a spinneret design.3Chang S. Wang M. Zhang F. Liu Y. Liu X. Yu D.G. Shen H. Sheath-separate-core nanocomposites fabricated using a trifluid electrospinning.Mater. Des. 2020; 192108782Crossref Scopus (67) Google Scholar Chang et al. used this bionic design, an oval-shaped tube with two channels, to generate the sheath stainless-steel capillary containing two inner stainless-steel capillaries in the center. The design of this unique spinneret for implementing trifluid electrospinning facilitated the fabrication of the sheath-separate-core nanofibers. Using this unique spinneret, three Eudragit copolymers could be developed with varied pH-dependent solubility in one sheath-separate-core nanofiber. Lotus roots contain many channels and can be mimicked to fabricate multichannel tubular morphologies. Based on the cross-section of the lotus root, spinnerets with multifluid compound jet electrospinning can be developed. Specifically, for a three-channel tube spinneret, three metallic capillaries at the vertices of an equilateral triangle can be inserted into a plastic syringe. The fabrication of multichannel tubes with variable diameters and channel numbers, such as two, four, or five channels, is feasible in this manner. The study of shellfish began more than 2,000 years ago with the Greek philosopher Aristotle. Later, the world discovered a beautiful pyramid-shaped fossil conch, the Entemnotrochus rumphii. An electrospinning spinneret with a similar solid pyramid-like morphology was designed, and finer nanofibers with narrow distribution were observed from this spinneret. More importantly, these bionic needle-less electrospinning setups have a high productivity of ∼4.00 g/h, which is much higher than the conventional single-needle productivity of 0.01–0.10 g/h. The lotus seedpod provides a novel idea for the design of multineedle electrospinning. These hollow needles could be arranged not only into a linear array but also with certain geometric patterns, such as a circular, triangular, square, or hexagonal pattern. However, the paths of the jets often become irregular because of the electric field force and the coulombic force, and therefore the capability of this method is limited. The bionic design of the electrospinning spinneret provides a new possibility to fabricate unconventional fibers with various morphologies such as single hollow; sheath-separate-core; hollow fiber with two, three, four, and even more channels; and nanowire in microtube. The unconventional properties of fibers prepared by this novel technique offer a wide range of application potentials and pathways.4Shi S. Si Y. Han Y. Wu T. Iqbal M.I. Fei B. Li R.K.Y. Hu J. Qu J. Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications.Adv. Mater. 2022; 342107938Crossref Scopus (59) Google Scholar,5Xiong R. Hua D. Van Hoeck J. Berdecka D. Léger L. De Munter S. Fraire J.C. Raes L. Harizaj A. Sauvage F. Goetgeluk G. Pille M. Aalders J. Belza J. Van Acker T. Bolea-Fernandez E. Si T. Vanhaecke F. De Vos W.H. Vandekerckhove B. van Hengel J. Raemdonck K. Huang C. De Smedt S.C. Braeckmans K. Photothermal nanofibres enable safe engineering of therapeutic cells.Nat. Nanotechnol. 2021; 16: 1281-1291Crossref PubMed Scopus (142) Google Scholar Several interesting examples and applications are listed as follows: (1) closed cavities in solid fibers are typically detrimental to the transfer and transport of substances; however, with hollow fibers, multiple chambers could easily be used for pollutant absorption, catalysis, supercapacitors, and batteries. (2) Multiple chambers within one fiber offer multidrug and functional combinability, with both therapeutics and diagnostics components integrated into one material. (3) Core-shell structures could provide a multilevel filtration effect, and the enlarged surface area could provide a large contact area with the target pollutant and electrolyte, for environmental and energy applications. (4) Electrospinning setups with special multiple-needle or needle-less solid spinnerets could provide high productivity for mixed nanofibers and possibly finer morphological control. Although a subtle electrospinning spinneret design plays a key role in the final formation of fiber materials, several limitations exist. For example, the miscibility and compatibility of solvent must be carefully considered in coaxial electrospinning. Furthermore, a more detailed study of the relationship between the spinnerets and their fiber morphologies is required. Furthermore, bionic designed spinnerets have low productivity. As a future prospect, this innovative design is worth exploring further, with needle and needle-less electrospinning based on emerging and evolving bionic design. For needle electrospinning, recent advances in coaxial spinnerets could be used to fabricate hollow, core-shell, and more complex nanofibers by feeding different precursor solutions into the coaxial capillaries. Multineedle spinnerets offer the advantage of producing mixed nanofibers with high productivity. Significantly, needle-less electrospinning could offer a more unique bionic design for spinnerets without clogging issues. Therefore, these types of nanofiber jets could be operated simultaneously to increase the throughput. Studying spinneret designs based on natural objects has been an effective design method for preparing advanced fiber materials that meet real-world demands, and this approach will play an important role in future electrospinning technology. The authors would like to acknowledge the financial support for this research received from the Ministry of Science and Technology China-Korea Youth Researcher Exchange Program (2022–09), the National Natural Science Foundation of China (52203006), and the Shanghai Sailing Program (21YF1431000). The authors declare no competing interests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Guo99发布了新的文献求助10
9秒前
Guo99完成签到,获得积分10
21秒前
科研通AI2S应助999采纳,获得10
41秒前
1分钟前
1分钟前
yumeng发布了新的文献求助20
1分钟前
LAN完成签到,获得积分10
1分钟前
酷波er应助香辣鸡腿堡采纳,获得10
1分钟前
999完成签到,获得积分10
1分钟前
1分钟前
1分钟前
程宣皓完成签到,获得积分10
1分钟前
Georgechan完成签到,获得积分10
1分钟前
1分钟前
YUN关注了科研通微信公众号
1分钟前
gl发布了新的文献求助10
1分钟前
1分钟前
YUN发布了新的文献求助10
2分钟前
辛勤千筹完成签到,获得积分10
2分钟前
辛勤千筹发布了新的文献求助10
2分钟前
科研通AI2S应助辛勤千筹采纳,获得20
3分钟前
科研通AI2S应助辛勤千筹采纳,获得20
3分钟前
CipherSage应助xiao采纳,获得10
4分钟前
4分钟前
4分钟前
饱满飞机应助Curry采纳,获得20
4分钟前
oscar完成签到,获得积分10
5分钟前
caca完成签到,获得积分10
5分钟前
ronnie147完成签到 ,获得积分10
5分钟前
宝宝熊的熊宝宝完成签到,获得积分10
5分钟前
5分钟前
scott910806发布了新的文献求助10
5分钟前
艺霖大王完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
木由关注了科研通微信公众号
6分钟前
zqq完成签到,获得积分0
6分钟前
华仔应助木由采纳,获得10
6分钟前
6分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379091
求助须知:如何正确求助?哪些是违规求助? 2994571
关于积分的说明 8759795
捐赠科研通 2679155
什么是DOI,文献DOI怎么找? 1467494
科研通“疑难数据库(出版商)”最低求助积分说明 678702
邀请新用户注册赠送积分活动 670381