Rescue the cycle life of LiNi0.5Mn1.5O4 cathode on high voltage via glyceryl triacetate as the multifunction additive

电解质 阴极 电化学 溶解 相间 分解 过渡金属 化学 离子 材料科学 高压 金属 化学工程 电极 无机化学 电压 物理化学 催化作用 电气工程 有机化学 工程类 生物 遗传学
作者
Chunlei Tan,Zhikang Huang,Yu Li,You Li,Yujie Zou,Shouxin Zhang,Lisan Cui,Feiyan Lai,Guanhua Yang,Chenggui Jing,Hongqiang Wang,Qingyu Li
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:314: 123608-123608 被引量:3
标识
DOI:10.1016/j.seppur.2023.123608
摘要

The poor cyclic stability is the key point to restricting the commercial application of LNi0.5Mn1.5O4-based lithium-ion batteries (LNMO-based LIBs) on high voltage (5 V-class). Once the working voltage is over 4.3 V, the parasitic reactions on the LNMO interphase will be the trigger for a series of problems such as the continuous decomposition of electrolytes and dissolution of transition metal ions. The glyceryl triacetate (GT) has been used as a functional additive to reconstruct a cathode electrolyte interphase (CEI) film to suppress the parasitic reactions and safeguard the LNMO structure. Compared to the influence of GT and propionic anhydride (PA) on the electrochemical performance of LNMO on high voltage, the LNMO/Li cell with GT exhibits exciting discharge capacity retention of 84.9 % compared with PA (17.6 %) and base electrolyte (BE, 8.6 %) after 500 cycles at 1C. The LNMO/Li cell with GT also has a remarkable rate performance in which capacity retention of 5C/2C is 85.7%, higher than 0.5 wt% PA (75.5%) and BE (62.1%). By characterizations, it is reasoningly demonstrated that the GT not only can be preferentially oxidized to form a robust CEI film on the LNMO surface to prevent the parasitic reaction but also rapidly capture the free transition metal ions and bind trace H2O in the electrolyte to improve the stability of LIBs. Simultaneously, the electrons from the carboxyl group of GT occupy the d-orbital of transition metal from LNMO, further effectively reducing the activity of LNMO. Particularly, the glycerol generated by the reaction of GT with H2O can effectively capture HF, H2O, and other small molecules under hydrogen-bond interaction, thereby improving the stability of LNMO LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SY发布了新的文献求助10
刚刚
可爱小哪吒完成签到,获得积分10
刚刚
斯文败类应助doudou采纳,获得10
1秒前
苹果完成签到,获得积分10
1秒前
1秒前
一颗咸蛋黄完成签到 ,获得积分20
3秒前
打打应助5477采纳,获得10
3秒前
灵巧坤发布了新的文献求助30
3秒前
3秒前
小猴完成签到,获得积分10
4秒前
Raymond应助NANA采纳,获得10
5秒前
Sean完成签到 ,获得积分10
5秒前
5秒前
无情山水发布了新的文献求助10
6秒前
锦纹完成签到,获得积分10
6秒前
南桥发布了新的文献求助10
6秒前
6秒前
伶俐的书白完成签到,获得积分10
7秒前
科研通AI5应助威武诺言采纳,获得10
7秒前
7秒前
LXL完成签到,获得积分10
7秒前
杳鸢应助三金采纳,获得20
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
英俊的铭应助yyj采纳,获得10
8秒前
SV发布了新的文献求助10
8秒前
9秒前
12发布了新的文献求助10
9秒前
JamesPei应助化学狗采纳,获得10
9秒前
胡图图发布了新的文献求助10
9秒前
10秒前
xm完成签到,获得积分10
11秒前
谦让的含海完成签到,获得积分10
11秒前
所所应助包容的剑采纳,获得10
11秒前
11秒前
12秒前
lynn_zhang发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762