Magnetically induced stiffening for soft robotics

磁流变液 变硬 软机器人 机器人学 刚度 人工智能 干扰 材料科学 执行机构 磁铁 软件可移植性 机械工程 计算机科学 机器人 工程类 结构工程 复合材料 物理 阻尼器 热力学 程序设计语言
作者
Leah Teresa Gaeta,Kevin McDonald,Lorenzo Kinnicutt,Megan Le,Sidney Wilkinson-Flicker,Yixiao Jiang,Taylan Atakuru,Evren Samur,Tommaso Ranzani
出处
期刊:Soft Matter [The Royal Society of Chemistry]
卷期号:19 (14): 2623-2636 被引量:2
标识
DOI:10.1039/d2sm01390h
摘要

Soft robots are well-suited for human-centric applications, but the compliance that gives soft robots this advantage must also be paired with adequate stiffness modulation such that soft robots can achieve more rigidity when needed. For this reason, variable stiffening mechanisms are often a necessary component of soft robot design. Many techniques have been explored to introduce variable stiffness structures into soft robots, such as pneumatically-controlled jamming and thermally-controlled phase change materials. Despite fast response time, jamming methods often require a bulkier pneumatic pressure line which limits portability; and while portable via electronic control, thermally-induced methods require compatibility with high temperatures and often suffer from slow response time. In this paper, we present a magnetically-controlled stiffening approach that combines jamming-based stiffening principles with magnetorheological fluid to create a hybrid mechanical and materials approach. In doing so, we combine the advantages of fast response time from pneumatically-based jamming with the portability of thermally-induced phase change methods. We explore the influence of magnetic field strength on the stiffening of our magnetorheological jamming beam samples in two ways: by exploiting the increase in yield stress of magnetorheological fluid, and by additionally using the clamping force between permanent magnets to further stiffen the samples via a clutch effect. We introduce an analytical model to predict the stiffness of our samples as a function of the magnetic field. Finally, we demonstrate electronic control of the stiffness using electropermanent magnets. In this way, we present an important step towards a new electronically-driven stiffening mechanism for soft robots that interact safely in close contact with humans, such as in wearable devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白幻雪完成签到 ,获得积分10
1秒前
Wency完成签到,获得积分10
1秒前
Echodeng发布了新的文献求助10
1秒前
纯2025完成签到,获得积分20
2秒前
博尔塔拉完成签到,获得积分10
2秒前
小面包完成签到,获得积分10
3秒前
3秒前
JamesPei应助wwec采纳,获得10
4秒前
OKAY完成签到,获得积分0
5秒前
gelinhao完成签到,获得积分10
5秒前
joe完成签到,获得积分10
5秒前
薛wen晶完成签到 ,获得积分10
5秒前
changyee发布了新的文献求助10
6秒前
从容芮应助博尔塔拉采纳,获得300
6秒前
6秒前
Echodeng完成签到,获得积分10
6秒前
daling完成签到,获得积分10
7秒前
阿喵完成签到,获得积分10
7秒前
JingP完成签到,获得积分10
8秒前
林好人完成签到,获得积分10
9秒前
9秒前
大模型应助儒雅海之采纳,获得10
10秒前
hazardatom完成签到 ,获得积分10
10秒前
大大小小发布了新的文献求助10
10秒前
cccc完成签到,获得积分10
11秒前
傲娇的咖啡豆完成签到,获得积分10
11秒前
无花果应助欢呼采文采纳,获得10
11秒前
小丸子完成签到 ,获得积分10
12秒前
画画的baby完成签到 ,获得积分10
12秒前
Jasmine发布了新的文献求助10
13秒前
Godspeed完成签到,获得积分10
13秒前
汉堡包应助坚强丸子采纳,获得10
13秒前
情怀应助黄义军采纳,获得10
13秒前
哎嘿应助科研能采纳,获得10
13秒前
醉熏的凡旋完成签到 ,获得积分10
14秒前
..完成签到,获得积分10
15秒前
ycsqz完成签到,获得积分10
15秒前
16秒前
加菲丰丰应助zz采纳,获得20
16秒前
大大小小完成签到,获得积分20
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151000
求助须知:如何正确求助?哪些是违规求助? 2802506
关于积分的说明 7848292
捐赠科研通 2459791
什么是DOI,文献DOI怎么找? 1309336
科研通“疑难数据库(出版商)”最低求助积分说明 628894
版权声明 601757