Magnetically induced stiffening for soft robotics

磁流变液 变硬 软机器人 机器人学 刚度 人工智能 干扰 材料科学 执行机构 磁铁 软件可移植性 机械工程 计算机科学 机器人 工程类 结构工程 复合材料 物理 阻尼器 热力学 程序设计语言
作者
Leah Teresa Gaeta,Kevin McDonald,Lorenzo Kinnicutt,Megan Le,Sidney Wilkinson-Flicker,Yixiao Jiang,Taylan Atakuru,Evren Samur,Tommaso Ranzani
出处
期刊:Soft Matter [Royal Society of Chemistry]
卷期号:19 (14): 2623-2636 被引量:2
标识
DOI:10.1039/d2sm01390h
摘要

Soft robots are well-suited for human-centric applications, but the compliance that gives soft robots this advantage must also be paired with adequate stiffness modulation such that soft robots can achieve more rigidity when needed. For this reason, variable stiffening mechanisms are often a necessary component of soft robot design. Many techniques have been explored to introduce variable stiffness structures into soft robots, such as pneumatically-controlled jamming and thermally-controlled phase change materials. Despite fast response time, jamming methods often require a bulkier pneumatic pressure line which limits portability; and while portable via electronic control, thermally-induced methods require compatibility with high temperatures and often suffer from slow response time. In this paper, we present a magnetically-controlled stiffening approach that combines jamming-based stiffening principles with magnetorheological fluid to create a hybrid mechanical and materials approach. In doing so, we combine the advantages of fast response time from pneumatically-based jamming with the portability of thermally-induced phase change methods. We explore the influence of magnetic field strength on the stiffening of our magnetorheological jamming beam samples in two ways: by exploiting the increase in yield stress of magnetorheological fluid, and by additionally using the clamping force between permanent magnets to further stiffen the samples via a clutch effect. We introduce an analytical model to predict the stiffness of our samples as a function of the magnetic field. Finally, we demonstrate electronic control of the stiffness using electropermanent magnets. In this way, we present an important step towards a new electronically-driven stiffening mechanism for soft robots that interact safely in close contact with humans, such as in wearable devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研人完成签到,获得积分10
1秒前
善学以致用应助MingY采纳,获得10
1秒前
清爽灰狼发布了新的文献求助10
2秒前
lmd完成签到,获得积分10
3秒前
大个应助七斤文采纳,获得10
3秒前
3秒前
Jo发布了新的文献求助10
4秒前
Eazin发布了新的文献求助10
4秒前
啊呀完成签到,获得积分10
5秒前
6秒前
小小月完成签到 ,获得积分10
6秒前
6秒前
ZQ完成签到,获得积分10
6秒前
6秒前
最专业发布了新的文献求助10
7秒前
7秒前
无花果应助我来回收数据采纳,获得10
8秒前
123完成签到,获得积分10
9秒前
9秒前
wangyang发布了新的文献求助10
11秒前
家伟发布了新的文献求助10
11秒前
万能图书馆应助赫连紫采纳,获得10
11秒前
12秒前
清爽灰狼完成签到,获得积分10
12秒前
13秒前
惠_____完成签到 ,获得积分10
13秒前
14秒前
完美世界应助热心的笑天采纳,获得30
15秒前
科目三应助Jo采纳,获得10
15秒前
15秒前
meizi发布了新的文献求助10
17秒前
陈嘻嘻完成签到 ,获得积分10
17秒前
静静发布了新的文献求助10
17秒前
航航完成签到,获得积分10
17秒前
Plucky完成签到,获得积分10
18秒前
阿拉发布了新的文献求助10
19秒前
清秀的仙人掌完成签到,获得积分10
19秒前
哈哈发布了新的文献求助10
20秒前
Lea_at_完成签到,获得积分20
21秒前
钟小熊发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751