磁流变液
变硬
软机器人
机器人学
刚度
人工智能
干扰
材料科学
执行机构
磁铁
软件可移植性
机械工程
计算机科学
机器人
工程类
结构工程
复合材料
物理
阻尼器
热力学
程序设计语言
作者
Leah Teresa Gaeta,Kevin McDonald,Lorenzo Kinnicutt,Megan Le,Sidney Wilkinson-Flicker,Yixiao Jiang,Taylan Atakuru,Evren Samur,Tommaso Ranzani
出处
期刊:Soft Matter
[The Royal Society of Chemistry]
日期:2023-01-01
卷期号:19 (14): 2623-2636
被引量:2
摘要
Soft robots are well-suited for human-centric applications, but the compliance that gives soft robots this advantage must also be paired with adequate stiffness modulation such that soft robots can achieve more rigidity when needed. For this reason, variable stiffening mechanisms are often a necessary component of soft robot design. Many techniques have been explored to introduce variable stiffness structures into soft robots, such as pneumatically-controlled jamming and thermally-controlled phase change materials. Despite fast response time, jamming methods often require a bulkier pneumatic pressure line which limits portability; and while portable via electronic control, thermally-induced methods require compatibility with high temperatures and often suffer from slow response time. In this paper, we present a magnetically-controlled stiffening approach that combines jamming-based stiffening principles with magnetorheological fluid to create a hybrid mechanical and materials approach. In doing so, we combine the advantages of fast response time from pneumatically-based jamming with the portability of thermally-induced phase change methods. We explore the influence of magnetic field strength on the stiffening of our magnetorheological jamming beam samples in two ways: by exploiting the increase in yield stress of magnetorheological fluid, and by additionally using the clamping force between permanent magnets to further stiffen the samples via a clutch effect. We introduce an analytical model to predict the stiffness of our samples as a function of the magnetic field. Finally, we demonstrate electronic control of the stiffness using electropermanent magnets. In this way, we present an important step towards a new electronically-driven stiffening mechanism for soft robots that interact safely in close contact with humans, such as in wearable devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI