Density-functional quantum computations on bandgap engineering and tuning of optoelectronic properties of MgH2 via Mo doping: Prospects and potential for clean energy hydrogen-storage fuel and optoelectronic applications

氢气储存 带隙 密度泛函理论 材料科学 兴奋剂 光电子学 氢燃料 储能 化学 计算化学 物理 热力学 功率(物理) 有机化学
作者
Azmat Iqbal,Muhammad Irfan,Sikander Azam,Hasnat Ahmad
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (53): 20419-20429 被引量:13
标识
DOI:10.1016/j.ijhydene.2023.03.012
摘要

With the increasing depletion of conventional energy sources and their detrimental environmental hazards, it is imperative to search for sustainable alternative clean energy sources. In the recent decades, hydrogen has emerged as potential source of clean energy. One of the potential alternatives to achieve the objective is the designing and characterization of materials for hydrogen-storage energy applications. In this regard, metal-bearing hydrides are the most promising candidates. For instance, magnesium-bearing hydrides are the focus of current research work owing to high hydrogen capacity of 7.6 wt%. In this paper, we first time report density functional-based quantum theoretical analysis to explore the potential of Mo-doped magnesium hydrides MgH2:Mo for optoelectronic and hydrogen-storage applications. For the quantum computations of the required optoelectronics and energy storage properties, we employed all-electron methods within generalized gradient approximation (GGA). Besides applying GGA approximation to account for the electronic correlated effects, we employed the Hubbard potential U (= 4 eV) for onsite repulsive Coulomb force. We predict that 10% doping by weight of Mo into MgH2 suppresses its insulating band gap of 4.9 eV to semiconducting band gap of order 3.15 eV for spin up and 0.15 eV for spin down. As such the doping of Mo can tune the the bandgap, structural, electronic and optoelectronic properties of MgH2 considerably for potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小民工应助kento采纳,获得50
刚刚
完美世界应助小萌采纳,获得10
1秒前
1秒前
gaoww完成签到,获得积分10
1秒前
2秒前
WZ0904发布了新的文献求助10
2秒前
2秒前
lab完成签到 ,获得积分0
2秒前
小蘑菇应助今今采纳,获得10
3秒前
CodeCraft应助秋之月采纳,获得10
3秒前
I1waml完成签到 ,获得积分10
3秒前
3秒前
guygun完成签到,获得积分10
3秒前
zho发布了新的文献求助10
4秒前
独特亦旋发布了新的文献求助10
4秒前
5秒前
研友_LOqqmZ完成签到,获得积分10
6秒前
6秒前
英俊的铭应助文献查找采纳,获得10
6秒前
solobang发布了新的文献求助10
6秒前
Jasper应助老迟到的书雁采纳,获得10
9秒前
orixero应助小二采纳,获得10
9秒前
10秒前
10秒前
simple完成签到,获得积分10
10秒前
caoyy发布了新的文献求助10
10秒前
赵小可可可可完成签到,获得积分10
12秒前
小萌发布了新的文献求助10
13秒前
weiv发布了新的文献求助10
13秒前
海科科发布了新的文献求助10
14秒前
陌上花完成签到,获得积分10
14秒前
我是站长才怪应助微笑襄采纳,获得10
15秒前
caoyy完成签到,获得积分10
16秒前
JamesPei应助独特亦旋采纳,获得10
17秒前
18秒前
18秒前
科目三应助Jenny采纳,获得50
20秒前
gry发布了新的文献求助10
21秒前
Hh发布了新的文献求助10
23秒前
Jzhang应助daniel采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824