Density-functional quantum computations on bandgap engineering and tuning of optoelectronic properties of MgH2 via Mo doping: Prospects and potential for clean energy hydrogen-storage fuel and optoelectronic applications

氢气储存 带隙 密度泛函理论 材料科学 兴奋剂 光电子学 氢燃料 储能 化学 计算化学 物理 热力学 功率(物理) 有机化学
作者
Azmat Iqbal,Muhammad Irfan,Sikander Azam,Hasnat Ahmad
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (53): 20419-20429 被引量:13
标识
DOI:10.1016/j.ijhydene.2023.03.012
摘要

With the increasing depletion of conventional energy sources and their detrimental environmental hazards, it is imperative to search for sustainable alternative clean energy sources. In the recent decades, hydrogen has emerged as potential source of clean energy. One of the potential alternatives to achieve the objective is the designing and characterization of materials for hydrogen-storage energy applications. In this regard, metal-bearing hydrides are the most promising candidates. For instance, magnesium-bearing hydrides are the focus of current research work owing to high hydrogen capacity of 7.6 wt%. In this paper, we first time report density functional-based quantum theoretical analysis to explore the potential of Mo-doped magnesium hydrides MgH2:Mo for optoelectronic and hydrogen-storage applications. For the quantum computations of the required optoelectronics and energy storage properties, we employed all-electron methods within generalized gradient approximation (GGA). Besides applying GGA approximation to account for the electronic correlated effects, we employed the Hubbard potential U (= 4 eV) for onsite repulsive Coulomb force. We predict that 10% doping by weight of Mo into MgH2 suppresses its insulating band gap of 4.9 eV to semiconducting band gap of order 3.15 eV for spin up and 0.15 eV for spin down. As such the doping of Mo can tune the the bandgap, structural, electronic and optoelectronic properties of MgH2 considerably for potential applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助qqq159753采纳,获得10
刚刚
科研果完成签到,获得积分10
刚刚
韩豆乐发布了新的文献求助10
1秒前
1秒前
2秒前
阿白完成签到,获得积分10
2秒前
欣欣向荣完成签到,获得积分10
3秒前
3秒前
小曲同学完成签到,获得积分10
4秒前
小文子发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
tong完成签到,获得积分10
5秒前
7秒前
7秒前
Elaine应助maofeng采纳,获得10
7秒前
7秒前
完美世界应助Zhang采纳,获得10
7秒前
9秒前
DKY驳回了小蘑菇应助
9秒前
小土豆完成签到,获得积分10
9秒前
韩豆乐完成签到,获得积分10
10秒前
10秒前
Jeffny完成签到 ,获得积分10
11秒前
隔壁老璇发布了新的文献求助10
12秒前
13秒前
14秒前
清璃发布了新的文献求助10
14秒前
14秒前
14秒前
蔚然无尽蓝完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
开朗的蚂蚁完成签到,获得积分10
16秒前
Zx_1993应助叉烧饭采纳,获得10
17秒前
18秒前
Barret发布了新的文献求助10
18秒前
meng完成签到 ,获得积分10
18秒前
12366666发布了新的文献求助10
19秒前
lily2333完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532370
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576802
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499032
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450265