Pediatric brain tumor classification using deep learning on MR-images with age fusion

深度学习 人工智能 脑瘤 融合 计算机科学 神经影像学 模式识别(心理学) 心理学 医学 神经科学 病理 哲学 语言学
作者
Iulian Emil Tampu,Tamara Bianchessi,Ida Blystad,Peter Lundberg,Per Olof Nyman,Anders Eklund,Neda Haj‐Hosseini
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.09.05.24313109
摘要

ABSTRACT Purpose To implement and evaluate deep learning-based methods for the classification of pediatric brain tumors in MR data. Materials and methods A subset of the “Children’s Brain Tumor Network” dataset was retrospectively used (n=178 subjects, female=72, male=102, NA=4, age-range [0.01, 36.49] years) with tumor types being low-grade astrocytoma (n=84), ependymoma (n=32), and medulloblastoma (n=62). T1w post-contrast (n=94 subjects), T2w (n=160 subjects), and ADC (n=66 subjects) MR sequences were used separately. Two deep-learning models were trained on transversal slices showing tumor. Joint fusion was implemented to combine image and age data, and two pre-training paradigms were utilized. Model explainability was investigated using gradient-weighted class activation mapping (Grad-CAM), and the learned feature space was visualized using principal component analysis (PCA). Results The highest tumor-type classification performance was achieved when using a vision transformer model pre-trained on ImageNet and fine-tuned on ADC images with age fusion (MCC: 0.77 ± 0.14 Accuracy: 0.87 ± 0.08), followed by models trained on T2w (MCC: 0.58 ± 0.11, Accuracy: 0.73 ± 0.08) and T1w post-contrast (MCC: 0.41 ± 0.11, Accuracy: 0.62 ± 0.08) data. Age fusion marginally improved the model’s performance. Both model architectures performed similarly across the experiments, with no differences between the pre-training strategies. Grad-CAMs showed that the models’ attention focused on the brain region. PCA of the feature space showed greater separation of the tumor-type clusters when using contrastive pre-training. Conclusion Classification of pediatric brain tumors on MR-images could be accomplished using deep learning, with the top-performing model being trained on ADC data, which is used by radiologists for the clinical classification of these tumors. Key points The vision transformer model pre-trained on ImageNet and fine-tuned on ADC data with age fusion achieved the highest performance, which was significantly better than models trained on T2w (second-best) and T1w-Gd data. Fusion of age information with the image data marginally improved classification, and model architecture (ResNet50 -vs -ViT) and pre-training strategies (supervised -vs -self-supervised) did not show to significantly impact models’ performance. Model explainability, by means of class activation mapping and principal component analysis of the learned feature space, show that the models use the tumor region information for classification and that the tumor type clusters are better separated when using age information. Summary Deep learning-based classification of pediatric brain tumors can be achieved using single-sequence pre-operative MR data, showing the potential of automated decision support tools that can aid radiologists in the primary diagnosis of these tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
bkagyin应助心灵美亦寒采纳,获得10
2秒前
庐陵流川枫完成签到,获得积分10
2秒前
无聊的羊完成签到,获得积分10
3秒前
3秒前
3秒前
肉夹馍发布了新的文献求助10
3秒前
orixero应助源圈圈采纳,获得10
4秒前
苹果诗珊完成签到 ,获得积分10
5秒前
充电宝应助jenny_shjn采纳,获得10
5秒前
元宝发布了新的文献求助10
5秒前
6秒前
zwLu发布了新的文献求助10
7秒前
7秒前
无聊的羊发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
lj完成签到 ,获得积分10
8秒前
9秒前
9秒前
打打应助失眠的月光采纳,获得10
10秒前
10秒前
aka2012发布了新的文献求助10
11秒前
清和月发布了新的文献求助10
12秒前
13秒前
keal发布了新的文献求助10
13秒前
心语发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
慕青应助摇粒绒采纳,获得20
14秒前
肥仔龙发布了新的文献求助10
14秒前
谦让觅风发布了新的文献求助10
14秒前
hbpu230701发布了新的文献求助10
14秒前
15秒前
Lucas应助xaaowang采纳,获得30
16秒前
cjjwei完成签到 ,获得积分10
16秒前
赵心心发布了新的文献求助10
19秒前
lijing123发布了新的文献求助10
19秒前
20秒前
不一样的烟火完成签到 ,获得积分10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749224
求助须知:如何正确求助?哪些是违规求助? 5456884
关于积分的说明 15362980
捐赠科研通 4888661
什么是DOI,文献DOI怎么找? 2628626
邀请新用户注册赠送积分活动 1576952
关于科研通互助平台的介绍 1533670