Pediatric brain tumor classification using deep learning on MR-images with age fusion

深度学习 人工智能 脑瘤 融合 计算机科学 神经影像学 模式识别(心理学) 心理学 医学 神经科学 病理 哲学 语言学
作者
Iulian Emil Tampu,Tamara Bianchessi,Ida Blystad,Peter Lundberg,Per Olof Nyman,Anders Eklund,Neda Haj‐Hosseini
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.09.05.24313109
摘要

ABSTRACT Purpose To implement and evaluate deep learning-based methods for the classification of pediatric brain tumors in MR data. Materials and methods A subset of the “Children’s Brain Tumor Network” dataset was retrospectively used (n=178 subjects, female=72, male=102, NA=4, age-range [0.01, 36.49] years) with tumor types being low-grade astrocytoma (n=84), ependymoma (n=32), and medulloblastoma (n=62). T1w post-contrast (n=94 subjects), T2w (n=160 subjects), and ADC (n=66 subjects) MR sequences were used separately. Two deep-learning models were trained on transversal slices showing tumor. Joint fusion was implemented to combine image and age data, and two pre-training paradigms were utilized. Model explainability was investigated using gradient-weighted class activation mapping (Grad-CAM), and the learned feature space was visualized using principal component analysis (PCA). Results The highest tumor-type classification performance was achieved when using a vision transformer model pre-trained on ImageNet and fine-tuned on ADC images with age fusion (MCC: 0.77 ± 0.14 Accuracy: 0.87 ± 0.08), followed by models trained on T2w (MCC: 0.58 ± 0.11, Accuracy: 0.73 ± 0.08) and T1w post-contrast (MCC: 0.41 ± 0.11, Accuracy: 0.62 ± 0.08) data. Age fusion marginally improved the model’s performance. Both model architectures performed similarly across the experiments, with no differences between the pre-training strategies. Grad-CAMs showed that the models’ attention focused on the brain region. PCA of the feature space showed greater separation of the tumor-type clusters when using contrastive pre-training. Conclusion Classification of pediatric brain tumors on MR-images could be accomplished using deep learning, with the top-performing model being trained on ADC data, which is used by radiologists for the clinical classification of these tumors. Key points The vision transformer model pre-trained on ImageNet and fine-tuned on ADC data with age fusion achieved the highest performance, which was significantly better than models trained on T2w (second-best) and T1w-Gd data. Fusion of age information with the image data marginally improved classification, and model architecture (ResNet50 -vs -ViT) and pre-training strategies (supervised -vs -self-supervised) did not show to significantly impact models’ performance. Model explainability, by means of class activation mapping and principal component analysis of the learned feature space, show that the models use the tumor region information for classification and that the tumor type clusters are better separated when using age information. Summary Deep learning-based classification of pediatric brain tumors can be achieved using single-sequence pre-operative MR data, showing the potential of automated decision support tools that can aid radiologists in the primary diagnosis of these tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TearMarks发布了新的文献求助10
1秒前
所所应助LYZ采纳,获得10
1秒前
吞金完成签到,获得积分10
1秒前
lin发布了新的文献求助10
1秒前
科研通AI6应助小笨嘴采纳,获得10
2秒前
zxf完成签到,获得积分20
3秒前
cassiecx发布了新的文献求助10
3秒前
七七发布了新的文献求助10
3秒前
4秒前
福明明完成签到,获得积分10
4秒前
zxf发布了新的文献求助10
4秒前
5秒前
要努力写文章的小白完成签到,获得积分10
5秒前
FashionBoy应助蜜蜜芪采纳,获得10
5秒前
gwt完成签到,获得积分10
6秒前
fish112发布了新的文献求助10
6秒前
Jing发布了新的文献求助10
6秒前
6秒前
浮游应助畅快的雅青采纳,获得10
7秒前
7秒前
hbhbj发布了新的文献求助10
7秒前
wyp发布了新的文献求助10
8秒前
prode完成签到,获得积分10
9秒前
9秒前
lalala应助黎明森采纳,获得10
9秒前
10秒前
sdaDAS发布了新的文献求助10
10秒前
11秒前
CipherSage应助guochang采纳,获得10
11秒前
Edward发布了新的文献求助30
12秒前
浮游应助和老爹豆豆采纳,获得10
12秒前
闫小天天完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
666发布了新的文献求助10
14秒前
英俊的铭应助热情的远锋采纳,获得10
14秒前
小二郎应助vebb采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
Criminology34应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058