亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pediatric brain tumor classification using deep learning on MR-images with age fusion

深度学习 人工智能 脑瘤 融合 计算机科学 神经影像学 模式识别(心理学) 心理学 医学 神经科学 病理 哲学 语言学
作者
Iulian Emil Tampu,Tamara Bianchessi,Ida Blystad,Peter Lundberg,Per Olof Nyman,Anders Eklund,Neda Haj‐Hosseini
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.09.05.24313109
摘要

ABSTRACT Purpose To implement and evaluate deep learning-based methods for the classification of pediatric brain tumors in MR data. Materials and methods A subset of the “Children’s Brain Tumor Network” dataset was retrospectively used (n=178 subjects, female=72, male=102, NA=4, age-range [0.01, 36.49] years) with tumor types being low-grade astrocytoma (n=84), ependymoma (n=32), and medulloblastoma (n=62). T1w post-contrast (n=94 subjects), T2w (n=160 subjects), and ADC (n=66 subjects) MR sequences were used separately. Two deep-learning models were trained on transversal slices showing tumor. Joint fusion was implemented to combine image and age data, and two pre-training paradigms were utilized. Model explainability was investigated using gradient-weighted class activation mapping (Grad-CAM), and the learned feature space was visualized using principal component analysis (PCA). Results The highest tumor-type classification performance was achieved when using a vision transformer model pre-trained on ImageNet and fine-tuned on ADC images with age fusion (MCC: 0.77 ± 0.14 Accuracy: 0.87 ± 0.08), followed by models trained on T2w (MCC: 0.58 ± 0.11, Accuracy: 0.73 ± 0.08) and T1w post-contrast (MCC: 0.41 ± 0.11, Accuracy: 0.62 ± 0.08) data. Age fusion marginally improved the model’s performance. Both model architectures performed similarly across the experiments, with no differences between the pre-training strategies. Grad-CAMs showed that the models’ attention focused on the brain region. PCA of the feature space showed greater separation of the tumor-type clusters when using contrastive pre-training. Conclusion Classification of pediatric brain tumors on MR-images could be accomplished using deep learning, with the top-performing model being trained on ADC data, which is used by radiologists for the clinical classification of these tumors. Key points The vision transformer model pre-trained on ImageNet and fine-tuned on ADC data with age fusion achieved the highest performance, which was significantly better than models trained on T2w (second-best) and T1w-Gd data. Fusion of age information with the image data marginally improved classification, and model architecture (ResNet50 -vs -ViT) and pre-training strategies (supervised -vs -self-supervised) did not show to significantly impact models’ performance. Model explainability, by means of class activation mapping and principal component analysis of the learned feature space, show that the models use the tumor region information for classification and that the tumor type clusters are better separated when using age information. Summary Deep learning-based classification of pediatric brain tumors can be achieved using single-sequence pre-operative MR data, showing the potential of automated decision support tools that can aid radiologists in the primary diagnosis of these tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
小罗咩咩完成签到,获得积分10
12秒前
34秒前
蛋蛋完成签到,获得积分10
1分钟前
柚又完成签到,获得积分10
1分钟前
bxxxxx完成签到,获得积分10
1分钟前
1分钟前
wzm完成签到,获得积分10
1分钟前
YZF发布了新的文献求助30
1分钟前
大个应助咿咿呀呀采纳,获得10
1分钟前
1分钟前
隐形曼青应助KID采纳,获得10
1分钟前
1分钟前
明理妙柏发布了新的文献求助10
1分钟前
TszPok完成签到,获得积分10
1分钟前
1分钟前
炙热水云完成签到,获得积分10
1分钟前
TszPok发布了新的文献求助10
1分钟前
咿咿呀呀发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
咿咿呀呀完成签到,获得积分10
1分钟前
华仔应助恰知采纳,获得30
1分钟前
KID发布了新的文献求助10
1分钟前
1分钟前
xx完成签到,获得积分10
1分钟前
1分钟前
xx发布了新的文献求助10
1分钟前
朱文韬发布了新的文献求助10
1分钟前
赝品也烂漫完成签到,获得积分10
1分钟前
xixi完成签到 ,获得积分10
2分钟前
橙子完成签到 ,获得积分10
2分钟前
烟花应助KID采纳,获得10
2分钟前
星点完成签到 ,获得积分10
2分钟前
尚可完成签到 ,获得积分10
2分钟前
2分钟前
纯情的无色完成签到 ,获得积分10
2分钟前
2分钟前
KID发布了新的文献求助10
2分钟前
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960030
求助须知:如何正确求助?哪些是违规求助? 3506241
关于积分的说明 11128455
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789595
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056