Pediatric brain tumor classification using deep learning on MR-images with age fusion

深度学习 人工智能 脑瘤 融合 计算机科学 神经影像学 模式识别(心理学) 心理学 医学 神经科学 病理 哲学 语言学
作者
Iulian Emil Tampu,Tamara Bianchessi,Ida Blystad,Peter Lundberg,Per Olof Nyman,Anders Eklund,Neda Haj‐Hosseini
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.09.05.24313109
摘要

ABSTRACT Purpose To implement and evaluate deep learning-based methods for the classification of pediatric brain tumors in MR data. Materials and methods A subset of the “Children’s Brain Tumor Network” dataset was retrospectively used (n=178 subjects, female=72, male=102, NA=4, age-range [0.01, 36.49] years) with tumor types being low-grade astrocytoma (n=84), ependymoma (n=32), and medulloblastoma (n=62). T1w post-contrast (n=94 subjects), T2w (n=160 subjects), and ADC (n=66 subjects) MR sequences were used separately. Two deep-learning models were trained on transversal slices showing tumor. Joint fusion was implemented to combine image and age data, and two pre-training paradigms were utilized. Model explainability was investigated using gradient-weighted class activation mapping (Grad-CAM), and the learned feature space was visualized using principal component analysis (PCA). Results The highest tumor-type classification performance was achieved when using a vision transformer model pre-trained on ImageNet and fine-tuned on ADC images with age fusion (MCC: 0.77 ± 0.14 Accuracy: 0.87 ± 0.08), followed by models trained on T2w (MCC: 0.58 ± 0.11, Accuracy: 0.73 ± 0.08) and T1w post-contrast (MCC: 0.41 ± 0.11, Accuracy: 0.62 ± 0.08) data. Age fusion marginally improved the model’s performance. Both model architectures performed similarly across the experiments, with no differences between the pre-training strategies. Grad-CAMs showed that the models’ attention focused on the brain region. PCA of the feature space showed greater separation of the tumor-type clusters when using contrastive pre-training. Conclusion Classification of pediatric brain tumors on MR-images could be accomplished using deep learning, with the top-performing model being trained on ADC data, which is used by radiologists for the clinical classification of these tumors. Key points The vision transformer model pre-trained on ImageNet and fine-tuned on ADC data with age fusion achieved the highest performance, which was significantly better than models trained on T2w (second-best) and T1w-Gd data. Fusion of age information with the image data marginally improved classification, and model architecture (ResNet50 -vs -ViT) and pre-training strategies (supervised -vs -self-supervised) did not show to significantly impact models’ performance. Model explainability, by means of class activation mapping and principal component analysis of the learned feature space, show that the models use the tumor region information for classification and that the tumor type clusters are better separated when using age information. Summary Deep learning-based classification of pediatric brain tumors can be achieved using single-sequence pre-operative MR data, showing the potential of automated decision support tools that can aid radiologists in the primary diagnosis of these tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助LCFXR采纳,获得10
1秒前
duanhuiyuan给asdfghj的求助进行了留言
1秒前
爆米花应助陈zv采纳,获得10
1秒前
0美团外卖0完成签到 ,获得积分10
2秒前
belinazhang发布了新的文献求助30
2秒前
ding应助LeeChanmn采纳,获得10
2秒前
3秒前
老王完成签到,获得积分10
4秒前
手撕蛋发布了新的文献求助10
4秒前
5秒前
gxl完成签到,获得积分10
6秒前
8秒前
木辛艺发布了新的文献求助10
8秒前
科研通AI2S应助优雅草丛采纳,获得10
9秒前
9秒前
9秒前
yy完成签到,获得积分10
10秒前
10秒前
阳哥完成签到,获得积分10
11秒前
11秒前
12秒前
RicardoZhou完成签到,获得积分10
12秒前
J.发布了新的文献求助10
13秒前
14秒前
阳哥发布了新的文献求助10
14秒前
壁虎君发布了新的文献求助10
15秒前
科研通AI2S应助jimskylxk采纳,获得10
15秒前
15秒前
科目三应助wuli采纳,获得10
15秒前
傻傻的夜柳应助刘松采纳,获得10
16秒前
寒冷书包发布了新的文献求助10
16秒前
yy发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
飞快的万声完成签到,获得积分10
19秒前
20秒前
加菲丰丰应助木辛艺采纳,获得30
20秒前
21秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3386569
求助须知:如何正确求助?哪些是违规求助? 2999668
关于积分的说明 8786168
捐赠科研通 2685344
什么是DOI,文献DOI怎么找? 1470946
科研通“疑难数据库(出版商)”最低求助积分说明 680031
邀请新用户注册赠送积分活动 672656