Pediatric brain tumor classification using deep learning on MR-images with age fusion

深度学习 人工智能 脑瘤 融合 计算机科学 神经影像学 模式识别(心理学) 心理学 医学 神经科学 病理 哲学 语言学
作者
Iulian Emil Tampu,Tamara Bianchessi,Ida Blystad,Peter Lundberg,Per Olof Nyman,Anders Eklund,Neda Haj‐Hosseini
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.09.05.24313109
摘要

ABSTRACT Purpose To implement and evaluate deep learning-based methods for the classification of pediatric brain tumors in MR data. Materials and methods A subset of the “Children’s Brain Tumor Network” dataset was retrospectively used (n=178 subjects, female=72, male=102, NA=4, age-range [0.01, 36.49] years) with tumor types being low-grade astrocytoma (n=84), ependymoma (n=32), and medulloblastoma (n=62). T1w post-contrast (n=94 subjects), T2w (n=160 subjects), and ADC (n=66 subjects) MR sequences were used separately. Two deep-learning models were trained on transversal slices showing tumor. Joint fusion was implemented to combine image and age data, and two pre-training paradigms were utilized. Model explainability was investigated using gradient-weighted class activation mapping (Grad-CAM), and the learned feature space was visualized using principal component analysis (PCA). Results The highest tumor-type classification performance was achieved when using a vision transformer model pre-trained on ImageNet and fine-tuned on ADC images with age fusion (MCC: 0.77 ± 0.14 Accuracy: 0.87 ± 0.08), followed by models trained on T2w (MCC: 0.58 ± 0.11, Accuracy: 0.73 ± 0.08) and T1w post-contrast (MCC: 0.41 ± 0.11, Accuracy: 0.62 ± 0.08) data. Age fusion marginally improved the model’s performance. Both model architectures performed similarly across the experiments, with no differences between the pre-training strategies. Grad-CAMs showed that the models’ attention focused on the brain region. PCA of the feature space showed greater separation of the tumor-type clusters when using contrastive pre-training. Conclusion Classification of pediatric brain tumors on MR-images could be accomplished using deep learning, with the top-performing model being trained on ADC data, which is used by radiologists for the clinical classification of these tumors. Key points The vision transformer model pre-trained on ImageNet and fine-tuned on ADC data with age fusion achieved the highest performance, which was significantly better than models trained on T2w (second-best) and T1w-Gd data. Fusion of age information with the image data marginally improved classification, and model architecture (ResNet50 -vs -ViT) and pre-training strategies (supervised -vs -self-supervised) did not show to significantly impact models’ performance. Model explainability, by means of class activation mapping and principal component analysis of the learned feature space, show that the models use the tumor region information for classification and that the tumor type clusters are better separated when using age information. Summary Deep learning-based classification of pediatric brain tumors can be achieved using single-sequence pre-operative MR data, showing the potential of automated decision support tools that can aid radiologists in the primary diagnosis of these tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小太阳完成签到,获得积分10
1秒前
单身的冰双完成签到,获得积分20
1秒前
默默的皮牙子完成签到,获得积分0
2秒前
up发布了新的文献求助10
2秒前
墨墨叻完成签到,获得积分10
2秒前
娇娇完成签到,获得积分10
2秒前
叶子发布了新的文献求助10
2秒前
wanci应助豆豆采纳,获得10
3秒前
3秒前
free发布了新的文献求助10
4秒前
guagua完成签到 ,获得积分10
4秒前
虚幻故事完成签到,获得积分10
4秒前
廿二完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
atmosphere发布了新的文献求助10
5秒前
小锤完成签到,获得积分10
5秒前
oohQoo完成签到,获得积分10
5秒前
YQF完成签到,获得积分10
6秒前
九日完成签到,获得积分10
7秒前
科研彭于晏完成签到,获得积分10
7秒前
Earnestlee完成签到,获得积分10
7秒前
英俊的铭应助yan采纳,获得10
8秒前
愿景完成签到,获得积分10
8秒前
sad完成签到,获得积分10
8秒前
luckyhan发布了新的文献求助10
8秒前
Shinewei完成签到,获得积分10
8秒前
Owen应助wsafhgfjb采纳,获得10
9秒前
9秒前
9秒前
alv完成签到,获得积分10
9秒前
cc2941完成签到,获得积分10
9秒前
壳壳完成签到,获得积分10
9秒前
丘比特应助风暴采纳,获得10
10秒前
Lychee完成签到 ,获得积分10
10秒前
10秒前
10秒前
五斤老陈醋完成签到,获得积分10
10秒前
10秒前
10秒前
Jasper应助fr0zen采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997