Deep learning assisted cancer disease prediction from gene expression data using WT-GAN

深度学习 人工智能 机器学习 计算机科学 特征选择 健康信息学 大数据 深信不疑网络 癌症 数据挖掘 医疗保健 医学 内科学 经济 经济增长
作者
U Ravindran,C. Gunavathi
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12911-024-02712-y
摘要

Abstract Several diverse fields including the healthcare system and drug development sectors have benefited immensely through the adoption of deep learning (DL), which is a subset of artificial intelligence (AI) and machine learning (ML). Cancer makes up a significant percentage of the illnesses that cause early human mortality across the globe, and this situation is likely to rise in the coming years, especially when non-communicable illnesses are not considered. As a result, cancer patients would greatly benefit from precise and timely diagnosis and prediction. Deep learning (DL) has become a common technique in healthcare due to the abundance of computational power. Gene expression datasets are frequently used in major DL-based applications for illness detection, notably in cancer therapy. The quantity of medical data, on the other hand, is often insufficient to fulfill deep learning requirements. Microarray gene expression datasets are used for training procedures despite their extreme dimensionality, limited volume of data samples, and sparsely available information. Data augmentation is commonly used to expand the training sample size for gene data. The Wasserstein Tabular Generative Adversarial Network (WT-GAN) model is used for the data augmentation process for generating synthetic data in this proposed work. The correlation-based feature selection technique selects the most relevant characteristics based on threshold values. Deep FNN and ML algorithms train and classify the gene expression samples. The augmented data give better classification results (> 97%) when using WT-GAN for cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
小王博士发布了新的文献求助10
5秒前
sci666发布了新的文献求助10
6秒前
独特的谷雪完成签到,获得积分10
6秒前
galeno发布了新的文献求助10
8秒前
10秒前
香蕉觅云应助FEIFEI采纳,获得10
11秒前
星辰大海应助zgnb采纳,获得10
12秒前
TIWOSS发布了新的文献求助10
15秒前
噜噜完成签到,获得积分10
16秒前
CYYDNDB完成签到 ,获得积分10
17秒前
18秒前
shain完成签到,获得积分10
19秒前
Yfvonne完成签到,获得积分10
19秒前
Nano-Su完成签到 ,获得积分10
20秒前
酷波er应助噜噜采纳,获得10
20秒前
21秒前
Erich完成签到 ,获得积分10
22秒前
科研混子发布了新的文献求助10
23秒前
Holland应助太渊采纳,获得10
23秒前
24秒前
Young完成签到,获得积分10
24秒前
酷波er应助TIWOSS采纳,获得10
24秒前
Hum0ro98完成签到,获得积分10
25秒前
仟惠发布了新的文献求助10
25秒前
27秒前
Ava应助默默的无敌采纳,获得10
27秒前
咯噔发布了新的文献求助10
30秒前
hzauhzau完成签到 ,获得积分10
30秒前
科研通AI5应助秋海棠采纳,获得10
33秒前
邓妍童发布了新的文献求助10
33秒前
今后应助蔡俊辉采纳,获得10
33秒前
33完成签到,获得积分10
33秒前
nino应助本心采纳,获得10
34秒前
HuFan1201完成签到 ,获得积分10
35秒前
36秒前
36秒前
墨川完成签到,获得积分10
36秒前
zh发布了新的文献求助10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835