Hydrogels displaying both high toughness and flexibility hold substantial practical value. However, it has been challenging to achieve these properties simultaneously. To address this challenge, we developed a special structure hydrogel named PAB-S inspired by chrysalis shell. Astragalus polysaccharide (AP) was copolymerized with polyvinyl alcohol (PVA) and betaine hydrochloride (BH) to prepare a low-modulus hydrogel, PAB. Subsequently, surface modification of the PAB hydrogel using sodium phytate (SP) resulted in the formation of the "shell" structured PAB-S hydrogel. The fracture strength of the shell-structured hydrogel increased by about 0.8 MPa. Meanwhile, PAB-S had a maximum tensile strain of 418 %, a toughness of 6.82 MJ/m3, and a modulus of elasticity of approximately 0.6 MPa. In addition, PAB-S hydrogel offers high strain sensitivity (GF up to 4.7), ultra-low response time of 20 ms. Finally, leveraging 2.4G communication technology and a deep learning (1D-CNN) algorithm, advanced functionalities such as wireless remote intelligent control, and deep learning-based finger grip disorder identification were realized using the PAB-S hydrogel sensor. The PAB-S hydrogel sensor holds promising prospects for applications in fields including deep learning, intelligent sensing, medical rehabilitation, and human–machine synchronization.