亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sparse Coding Inspired LSTM and Self-Attention Integration for Medical Image Segmentation

图像分割 人工智能 计算机科学 计算机视觉 分割 图像处理 编码(社会科学) 模式识别(心理学) 图像(数学) 数学 统计
作者
Zexuan Ji,Shunlong Ye,Xiao Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 6098-6113
标识
DOI:10.1109/tip.2024.3482189
摘要

Accurate and automatic segmentation of medical images plays an essential role in clinical diagnosis and analysis. It has been established that integrating contextual relationships substantially enhances the representational ability of neural networks. Conventionally, Long Short-Term Memory (LSTM) and Self-Attention (SA) mechanisms have been recognized for their proficiency in capturing global dependencies within data. However, these mechanisms have typically been viewed as distinct modules without a direct linkage. This paper presents the integration of LSTM design with SA sparse coding as a key innovation. It uses linear combinations of LSTM states for SA's query, key, and value (QKV) matrices to leverage LSTM's capability for state compression and historical data retention. This approach aims to rectify the shortcomings of conventional sparse coding methods that overlook temporal information, thereby enhancing SA's ability to do sparse coding and capture global dependencies. Building upon this premise, we introduce two innovative modules that weave the SA matrix into the LSTM state design in distinct manners, enabling LSTM to more adeptly model global dependencies and meld seamlessly with SA without accruing extra computational demands. Both modules are separately embedded into the U-shaped convolutional neural network architecture for handling both 2D and 3D medical images. Experimental evaluations on downstream medical image segmentation tasks reveal that our proposed modules not only excel on four extensively utilized datasets across various baselines but also enhance prediction accuracy, even on baselines that have already incorporated contextual modules. Code is available at https://github.com/yeshunlong/SALSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hugeyoung完成签到,获得积分10
刚刚
22秒前
marco发布了新的文献求助10
26秒前
30秒前
英姑应助marco采纳,获得10
33秒前
55秒前
1分钟前
张泽崇发布了新的文献求助10
1分钟前
姜忆霜完成签到 ,获得积分10
1分钟前
2分钟前
英俊的铭应助科研通管家采纳,获得20
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
2分钟前
bing完成签到 ,获得积分10
2分钟前
shelly7788完成签到 ,获得积分10
2分钟前
草木完成签到 ,获得积分20
2分钟前
小雨完成签到,获得积分10
2分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
完美世界应助科研通管家采纳,获得10
4分钟前
华仔应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
kyokyoro完成签到,获得积分10
5分钟前
mengliu完成签到,获得积分10
5分钟前
6分钟前
汉堡包应助科研通管家采纳,获得10
6分钟前
深情安青应助科研通管家采纳,获得10
6分钟前
6分钟前
123发布了新的文献求助10
6分钟前
杨怂怂完成签到 ,获得积分10
6分钟前
执着南琴发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
脑洞疼应助科研通管家采纳,获得10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965713
求助须知:如何正确求助?哪些是违规求助? 3510941
关于积分的说明 11155657
捐赠科研通 3245401
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214