Sparse Coding Inspired LSTM and Self-Attention Integration for Medical Image Segmentation

图像分割 人工智能 计算机科学 计算机视觉 分割 图像处理 编码(社会科学) 模式识别(心理学) 图像(数学) 数学 统计
作者
Zexuan Ji,Shunlong Ye,Xiao Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 6098-6113
标识
DOI:10.1109/tip.2024.3482189
摘要

Accurate and automatic segmentation of medical images plays an essential role in clinical diagnosis and analysis. It has been established that integrating contextual relationships substantially enhances the representational ability of neural networks. Conventionally, Long Short-Term Memory (LSTM) and Self-Attention (SA) mechanisms have been recognized for their proficiency in capturing global dependencies within data. However, these mechanisms have typically been viewed as distinct modules without a direct linkage. This paper presents the integration of LSTM design with SA sparse coding as a key innovation. It uses linear combinations of LSTM states for SA's query, key, and value (QKV) matrices to leverage LSTM's capability for state compression and historical data retention. This approach aims to rectify the shortcomings of conventional sparse coding methods that overlook temporal information, thereby enhancing SA's ability to do sparse coding and capture global dependencies. Building upon this premise, we introduce two innovative modules that weave the SA matrix into the LSTM state design in distinct manners, enabling LSTM to more adeptly model global dependencies and meld seamlessly with SA without accruing extra computational demands. Both modules are separately embedded into the U-shaped convolutional neural network architecture for handling both 2D and 3D medical images. Experimental evaluations on downstream medical image segmentation tasks reveal that our proposed modules not only excel on four extensively utilized datasets across various baselines but also enhance prediction accuracy, even on baselines that have already incorporated contextual modules. Code is available at https://github.com/yeshunlong/SALSTM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
summer木完成签到,获得积分20
刚刚
刚刚
刚刚
1秒前
kingwill应助拼搏的烙忱采纳,获得20
2秒前
诚心的小笼包完成签到,获得积分20
2秒前
2秒前
rgdfgf完成签到,获得积分10
2秒前
AeroY完成签到,获得积分10
3秒前
3秒前
发财红中发布了新的文献求助10
3秒前
文艺鞋垫完成签到,获得积分10
4秒前
4秒前
4秒前
tjy发布了新的文献求助10
5秒前
6秒前
单纯的小松鼠完成签到,获得积分10
7秒前
大模型应助深情素阴采纳,获得10
7秒前
8秒前
fff发布了新的文献求助10
9秒前
9秒前
10秒前
安然驳回了Magali应助
10秒前
10秒前
rgdfgf发布了新的文献求助10
11秒前
12秒前
CodeCraft应助哈喽采纳,获得10
12秒前
汉堡包应助xiaochao采纳,获得10
13秒前
13秒前
smallsix发布了新的文献求助10
13秒前
14秒前
15秒前
慕青应助ljy采纳,获得20
15秒前
15秒前
迟大猫应助跳跃的寄瑶采纳,获得10
16秒前
科研通AI5应助跳跃的寄瑶采纳,获得10
16秒前
李宏梅完成签到,获得积分10
16秒前
liangshuang发布了新的文献求助30
17秒前
科研通AI5应助徐小树采纳,获得10
17秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525973
求助须知:如何正确求助?哪些是违规求助? 3106420
关于积分的说明 9280254
捐赠科研通 2804049
什么是DOI,文献DOI怎么找? 1539151
邀请新用户注册赠送积分活动 716511
科研通“疑难数据库(出版商)”最低求助积分说明 709462