Pathology-knowledge Enhanced Multi-instance Prompt Learning for Few-shot Whole Slide Image Classification

弹丸 计算机科学 人工智能 一次性 单发 图像(数学) 模式识别(心理学) 计算机视觉 材料科学 工程类 光学 物理 机械工程 冶金
作者
Linhao Qu,Dingkang Yang,Dan Huang,Qinhao Guo,Rongkui Luo,Shaoting Zhang,Xiaosong Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.10814
摘要

Current multi-instance learning algorithms for pathology image analysis often require a substantial number of Whole Slide Images for effective training but exhibit suboptimal performance in scenarios with limited learning data. In clinical settings, restricted access to pathology slides is inevitable due to patient privacy concerns and the prevalence of rare or emerging diseases. The emergence of the Few-shot Weakly Supervised WSI Classification accommodates the significant challenge of the limited slide data and sparse slide-level labels for diagnosis. Prompt learning based on the pre-trained models (\eg, CLIP) appears to be a promising scheme for this setting; however, current research in this area is limited, and existing algorithms often focus solely on patch-level prompts or confine themselves to language prompts. This paper proposes a multi-instance prompt learning framework enhanced with pathology knowledge, \ie, integrating visual and textual prior knowledge into prompts at both patch and slide levels. The training process employs a combination of static and learnable prompts, effectively guiding the activation of pre-trained models and further facilitating the diagnosis of key pathology patterns. Lightweight Messenger (self-attention) and Summary (attention-pooling) layers are introduced to model relationships between patches and slides within the same patient data. Additionally, alignment-wise contrastive losses ensure the feature-level alignment between visual and textual learnable prompts for both patches and slides. Our method demonstrates superior performance in three challenging clinical tasks, significantly outperforming comparative few-shot methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
Yancent应助科研通管家采纳,获得10
刚刚
彭于彦祖应助科研通管家采纳,获得30
刚刚
斯文败类应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
三里墩头应助科研通管家采纳,获得20
1秒前
搜集达人应助科研通管家采纳,获得30
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
Yancent应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
标致冬日完成签到,获得积分10
2秒前
Sophie完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
新志应助温柔踏歌采纳,获得10
4秒前
dt完成签到,获得积分10
4秒前
赘婿应助shawn采纳,获得10
4秒前
CLN完成签到,获得积分10
4秒前
4秒前
每个人都完成签到,获得积分10
4秒前
从容追命完成签到,获得积分20
4秒前
chx完成签到,获得积分10
5秒前
tanjuan发布了新的文献求助10
5秒前
金金完成签到,获得积分10
6秒前
刻苦小丸子完成签到,获得积分10
6秒前
顺意发布了新的文献求助10
6秒前
李友健完成签到 ,获得积分10
6秒前
科研通AI2S应助司空豁采纳,获得10
7秒前
小张完成签到,获得积分10
7秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303593
求助须知:如何正确求助?哪些是违规求助? 2937893
关于积分的说明 8484865
捐赠科研通 2611823
什么是DOI,文献DOI怎么找? 1426334
科研通“疑难数据库(出版商)”最低求助积分说明 662567
邀请新用户注册赠送积分活动 647118