已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pathology-knowledge Enhanced Multi-instance Prompt Learning for Few-shot Whole Slide Image Classification

弹丸 计算机科学 人工智能 一次性 单发 图像(数学) 模式识别(心理学) 计算机视觉 材料科学 工程类 光学 物理 机械工程 冶金
作者
Linhao Qu,Dingkang Yang,Dan Huang,Qinhao Guo,Rongkui Luo,Shaoting Zhang,Xiaosong Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.10814
摘要

Current multi-instance learning algorithms for pathology image analysis often require a substantial number of Whole Slide Images for effective training but exhibit suboptimal performance in scenarios with limited learning data. In clinical settings, restricted access to pathology slides is inevitable due to patient privacy concerns and the prevalence of rare or emerging diseases. The emergence of the Few-shot Weakly Supervised WSI Classification accommodates the significant challenge of the limited slide data and sparse slide-level labels for diagnosis. Prompt learning based on the pre-trained models (\eg, CLIP) appears to be a promising scheme for this setting; however, current research in this area is limited, and existing algorithms often focus solely on patch-level prompts or confine themselves to language prompts. This paper proposes a multi-instance prompt learning framework enhanced with pathology knowledge, \ie, integrating visual and textual prior knowledge into prompts at both patch and slide levels. The training process employs a combination of static and learnable prompts, effectively guiding the activation of pre-trained models and further facilitating the diagnosis of key pathology patterns. Lightweight Messenger (self-attention) and Summary (attention-pooling) layers are introduced to model relationships between patches and slides within the same patient data. Additionally, alignment-wise contrastive losses ensure the feature-level alignment between visual and textual learnable prompts for both patches and slides. Our method demonstrates superior performance in three challenging clinical tasks, significantly outperforming comparative few-shot methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
整齐凝竹完成签到 ,获得积分10
3秒前
4秒前
蜀山发布了新的文献求助10
5秒前
5秒前
叮叮叮铛完成签到,获得积分10
7秒前
lllttt发布了新的文献求助100
7秒前
tecumseh完成签到,获得积分20
7秒前
小白白发布了新的文献求助10
7秒前
7秒前
8秒前
普通西瓜完成签到,获得积分10
9秒前
guang98765发布了新的文献求助10
9秒前
Flanker发布了新的文献求助10
9秒前
YLJGJZ完成签到,获得积分10
10秒前
华生发布了新的文献求助10
11秒前
11秒前
12秒前
普通西瓜发布了新的文献求助10
12秒前
aooky发布了新的文献求助10
14秒前
袖贤完成签到,获得积分10
14秒前
Ava应助小确幸采纳,获得10
15秒前
15秒前
李爱国应助Flanker采纳,获得10
15秒前
16秒前
66发布了新的文献求助10
16秒前
勤奋的从梦完成签到,获得积分10
21秒前
pp猪猪发布了新的文献求助10
21秒前
xiye完成签到,获得积分20
23秒前
LIN完成签到,获得积分10
24秒前
tecumseh发布了新的文献求助10
25秒前
aooky完成签到,获得积分10
27秒前
李富贵完成签到,获得积分10
28秒前
wkl关闭了wkl文献求助
28秒前
深情安青应助pp猪猪采纳,获得10
30秒前
DireWolf完成签到 ,获得积分10
31秒前
40秒前
bkagyin应助与山采纳,获得10
41秒前
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956731
求助须知:如何正确求助?哪些是违规求助? 3502835
关于积分的说明 11110432
捐赠科研通 3233801
什么是DOI,文献DOI怎么找? 1787571
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172