ELCA: Enhanced boundary location for Chinese named entity recognition via contextual association

命名实体识别 计算机科学 自然语言处理 人工智能 判决 模棱两可 答疑 实体链接 文字嵌入 标杆管理 共指 情报检索 嵌入 任务(项目管理) 知识库 业务 管理 营销 分辨率(逻辑) 程序设计语言 经济
作者
Yizhao Wang,Shun Mao,Yuncheng Jiang
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:28 (4): 973-990
标识
DOI:10.3233/ida-230383
摘要

Named Entity Recognition (NER) is a fundamental task that aids in the completion of other tasks such as text understanding, information retrieval and question answering in Natural Language Processing (NLP). In recent years, the use of a mix of character-word structure and dictionary information for Chinese NER has been demonstrated to be effective. As a representative of hybrid models, Lattice-LSTM has obtained better benchmarking results in several publicly available Chinese NER datasets. However, Lattice-LSTM does not address the issue of long-distance entities or the detection of several entities with the same character. At the same time, the ambiguity of entity boundary information also leads to a decrease in the accuracy of embedding NER. This paper proposes ELCA: Enhanced Boundary Location for Chinese Named Entity Recognition Via Contextual Association, a method that solves the problem of long-distance dependent entities by using sentence-level position information. At the same time, it uses adaptive word convolution to overcome the problem of several entities sharing the same character. ELCA achieves the state-of-the-art outcomes in Chinese Word Segmentation and Chinese NER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xingql983应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得30
刚刚
华仔应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
丁浩添发布了新的文献求助10
1秒前
大个应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得20
2秒前
perth完成签到,获得积分10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Islet发布了新的文献求助10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
3秒前
Hello应助Demonmaster采纳,获得10
3秒前
111完成签到,获得积分10
3秒前
Cc发布了新的文献求助10
3秒前
6666发布了新的文献求助30
3秒前
无名之辈完成签到,获得积分10
3秒前
慕青应助Damtree采纳,获得10
4秒前
NXZ发布了新的文献求助10
4秒前
5秒前
科研通AI5应助李振博采纳,获得10
5秒前
海藻发布了新的文献求助10
5秒前
yl发布了新的文献求助10
5秒前
5秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559