Leveraging a large language model to predict protein phase transition: A physical, multiscale, and interpretable approach

计算机科学 蛋白质聚集 相变 相(物质) 口译(哲学) 随机森林 生物系统 人工智能 计算生物学 生物 化学 物理 遗传学 量子力学 有机化学 程序设计语言
作者
Mor Frank,Pengyu Ni,Matthew L. Jensen,Mark Gerstein
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (33) 被引量:2
标识
DOI:10.1073/pnas.2320510121
摘要

Protein phase transitions (PPTs) from the soluble state to a dense liquid phase (forming droplets via liquid–liquid phase separation) or to solid aggregates (such as amyloids) play key roles in pathological processes associated with age-related diseases such as Alzheimer’s disease. Several computational frameworks are capable of separately predicting the formation of droplets or amyloid aggregates based on protein sequences, yet none have tackled the prediction of both within a unified framework. Recently, large language models (LLMs) have exhibited great success in protein structure prediction; however, they have not yet been used for PPTs. Here, we fine-tune a LLM for predicting PPTs and demonstrate its usage in evaluating how sequence variants affect PPTs, an operation useful for protein design. In addition, we show its superior performance compared to suitable classical benchmarks. Due to the “black-box” nature of the LLM, we also employ a classical random forest model along with biophysical features to facilitate interpretation. Finally, focusing on Alzheimer’s disease-related proteins, we demonstrate that greater aggregation is associated with reduced gene expression in Alzheimer’s disease, suggesting a natural defense mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wayne555555发布了新的文献求助10
刚刚
刚刚
彭于晏应助zhaoyuyuan采纳,获得10
1秒前
科研小白完成签到 ,获得积分10
1秒前
2秒前
2秒前
Akim应助jianglili采纳,获得10
3秒前
超越好帅发布了新的文献求助10
3秒前
4秒前
4秒前
鸦紗发布了新的文献求助10
4秒前
wayne555555完成签到,获得积分20
6秒前
BREEZE发布了新的文献求助10
7秒前
7秒前
9秒前
田様应助淡定念波采纳,获得10
11秒前
12秒前
虞丹萱发布了新的文献求助10
13秒前
14秒前
hqq131456完成签到,获得积分10
15秒前
17秒前
大麦迪发布了新的文献求助10
17秒前
silvery完成签到 ,获得积分20
18秒前
18秒前
舒心白安发布了新的文献求助10
19秒前
小二郎应助jianglili采纳,获得10
20秒前
abc完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
爆米花应助洛希极限采纳,获得10
21秒前
22秒前
22秒前
lty完成签到,获得积分20
23秒前
23秒前
ztayx完成签到 ,获得积分10
23秒前
25秒前
27秒前
28秒前
28秒前
香蕉觅云应助超越好帅采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011