牙周纤维
细胞凋亡
医学
口腔正畸科
牙科
生物
生物化学
作者
Hao Liu,Yunfan Zhang,Yunfan Zhang,Yiping Huang,Xin Peng,Yuming Zhao,Shuo Chen,Jie Deng,Wei Li,Bing Han
标识
DOI:10.1177/00220345241262706
摘要
Alveolar bone (AB) remodeling, including formation and absorption, is the foundation of orthodontic tooth movement (OTM). However, the sources and mechanisms underlying new bone formation remain unclear. Therefore, we aimed to understand the potential mechanism of bone formation during OTM, focusing on the leptin receptor+ (Lepr+) osteogenitors and periodontal ligament cells (PDLCs). We demonstrated that Lepr+ cells activated by force-induced PDLC apoptosis served as distinct osteoprogenitors during orthodontic bone regeneration. We investigated bone formation both in vivo and in vitro. Single-cell RNA sequencing analysis and lineage tracing demonstrated that Lepr represents a subcluster of stem cells that are activated and differentiate into osteoblasts during OTM. Targeted ablation of Lepr+ cells in a mouse model disrupted orthodontic force–guided bone regeneration. Furthermore, apoptosis and sequential fluorescent labeling assays revealed that the apoptosis of PDLCs preceded new bone deposition. We found that PDL stem cell–derived apoptotic vesicles activated Lepr+ cells in vitro. Following apoptosis inhibition, orthodontic force–activated osteoprogenitors and osteogenesis were significantly downregulated. Notably, we found that bone formation occurred on the compression side during OTM; this has been first reported here. To conclude, we found a potential mechanism of bone formation during OTM that may provide new insights into AB regeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI