Digital Pore Pressure Prediction for Well Drilling Using Machine Learning in a Deep Shale Gas Field

钻探 石油工程 油页岩 页岩气 地质学 领域(数学) 机械工程 工程类 数学 古生物学 纯数学
作者
Weimin Yue,Liu Pei,Ran Wen,Qiyong Gou,Q. S. Li,Ershe Xu,Ling Wang,Ying Huang,X. Ren,Yang Yang,C. Ninsom,Daniel Doan
标识
DOI:10.2118/219611-ms
摘要

Abstract Abnormal pressure and wellbore instability are the main challenges during drilling in shale gas reservoirs. Traditionally, the pre-drill predictions of pore pressure and wellbore stability are executed manually by geomechanics engineers. The procedures are usually complicated and take time, the results also highly depend on the executor's expertise. All these make pore pressure and wellbore stability prediction far from ideal and automatic. In this study, we utilized machine learning methods to perform prediction in a simpler manner. The digital models were trained with existing well data, geology data and drilling data, and were correlated with spacing coordinates, that contains geological structure information. The models on formation materials properties are trained and learnt with patterns recognition; the pore pressure, earth stresses and wellbore stability are trained with physics-based hybrid algorithm. The trained models are then used to predict pore pressure and mud weight window at any point in subsurface or along any planned well trajectory, to identify drilling risks and recommend solutions. This approach was applied and validated in a deep shale gas field in Sichuan basin, China. In this field, the main shale gas reservoirs are overpressured and severe drilling complexities were encountered in drilling. Horizonal development wells are planned to drill to enhance production. This requires pre-drill pore pressure and wellbore stability prediction. Due to multiple abnormal pressure mechanisms and subsurface complexity, manual methodology is usually time-consuming, and the results are not consistent with different executors. With the developed new machine learning method, the digital models were trained with eleven geology surfaces and well data from eight existing wells. The trained model was used to predict pore pressure and mud weight window, including formation collapse pressure, mud loss pressure and breakdown pressure. The machine learning prediction of planned horizontal well Y14H and well Y15H were then compared against manual results calculated by geomechanics experts. The digital results matched well with manual results. The actual drilling results of well Y15H also confirmed the accuracy of the machine learning method. In well Y15H drilling, there were no drilling complexities and hole enlargements as using mud weight optimized with machine learning prediction. After well completed, the results showed that the pore pressure difference was only 0.5% between downhole measurement, 53.1MPa, and machine learning prediction, 52.8MPa. The minimum horizontal stress difference was about 5% between machine learning prediction, 72.88MPa, and downhole measurement, 76.76MPa. This field study confirmed the accuracy, effectiveness, and efficiency of machine learning method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
大力的诗蕾完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
Aeeeeeeon完成签到 ,获得积分10
8秒前
PQ完成签到,获得积分10
10秒前
12秒前
keyanxinshou完成签到 ,获得积分10
12秒前
von完成签到,获得积分10
12秒前
王平安完成签到 ,获得积分10
14秒前
沫柠完成签到 ,获得积分10
14秒前
甜蜜冷风完成签到,获得积分10
15秒前
怀南完成签到 ,获得积分10
15秒前
计划逃跑完成签到 ,获得积分10
17秒前
朴素海亦完成签到 ,获得积分10
20秒前
jixuchance完成签到,获得积分10
21秒前
小白鞋完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
俊逸的康乃馨完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
看文献完成签到,获得积分10
28秒前
科研韭菜完成签到 ,获得积分10
28秒前
jscr完成签到,获得积分10
29秒前
29秒前
机智的青柏完成签到 ,获得积分10
29秒前
嬛嬛完成签到,获得积分10
30秒前
嗯哼完成签到 ,获得积分10
31秒前
杨一完成签到 ,获得积分10
31秒前
眼科女医生小魏完成签到 ,获得积分10
36秒前
Lan完成签到,获得积分10
39秒前
豆包糊了完成签到,获得积分10
39秒前
百里幻翠完成签到,获得积分10
42秒前
xiu完成签到 ,获得积分10
42秒前
cherry完成签到 ,获得积分10
43秒前
洗衣液谢完成签到 ,获得积分10
45秒前
free2030完成签到,获得积分10
47秒前
任性翠安完成签到 ,获得积分10
48秒前
黑粉头头完成签到,获得积分10
49秒前
50秒前
0109完成签到,获得积分10
50秒前
腼腆的南晴完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858