亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond

分割 计算机科学 人工智能 数据科学
作者
Shubhi Bansal,A Sreeharish,Madhava Prasath J,S Manikandan,Sreekanth Madisetty,Mohammad Zia Ur Rehman,Chandravardhan Singh Raghaw,Gaurav Duggal,Nagendra Kumar
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.02362
摘要

Mamba, a special case of the State Space Model, is gaining popularity as an alternative to template-based deep learning approaches in medical image analysis. While transformers are powerful architectures, they have drawbacks, including quadratic computational complexity and an inability to address long-range dependencies efficiently. This limitation affects the analysis of large and complex datasets in medical imaging, where there are many spatial and temporal relationships. In contrast, Mamba offers benefits that make it well-suited for medical image analysis. It has linear time complexity, which is a significant improvement over transformers. Mamba processes longer sequences without attention mechanisms, enabling faster inference and requiring less memory. Mamba also demonstrates strong performance in merging multimodal data, improving diagnosis accuracy and patient outcomes. The organization of this paper allows readers to appreciate the capabilities of Mamba in medical imaging step by step. We begin by defining core concepts of SSMs and models, including S4, S5, and S6, followed by an exploration of Mamba architectures such as pure Mamba, U-Net variants, and hybrid models with convolutional neural networks, transformers, and Graph Neural Networks. We also cover Mamba optimizations, techniques and adaptations, scanning, datasets, applications, experimental results, and conclude with its challenges and future directions in medical imaging. This review aims to demonstrate the transformative potential of Mamba in overcoming existing barriers within medical imaging while paving the way for innovative advancements in the field. A comprehensive list of Mamba architectures applied in the medical field, reviewed in this work, is available at Github.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
嘎嘎好发布了新的文献求助10
9秒前
10秒前
w。完成签到 ,获得积分10
12秒前
wf发布了新的文献求助10
14秒前
完美世界应助dali采纳,获得10
17秒前
SYLH应助qwq采纳,获得10
22秒前
wupeilin0完成签到 ,获得积分10
23秒前
Orange应助PrayOne采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
ceeray23应助科研通管家采纳,获得10
26秒前
lwww应助科研通管家采纳,获得10
26秒前
28秒前
dali完成签到,获得积分20
28秒前
dali发布了新的文献求助10
31秒前
38秒前
44秒前
小二郎完成签到 ,获得积分10
45秒前
领导范儿应助wf采纳,获得10
53秒前
ss完成签到 ,获得积分10
56秒前
57秒前
58秒前
58秒前
PrayOne发布了新的文献求助10
1分钟前
春天的粥完成签到 ,获得积分10
1分钟前
1分钟前
MM11111完成签到,获得积分10
1分钟前
warry发布了新的文献求助10
1分钟前
1分钟前
1分钟前
fly完成签到 ,获得积分10
1分钟前
warry完成签到,获得积分10
1分钟前
1分钟前
以太橘发布了新的文献求助10
1分钟前
柠檬完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Jasper应助以太橘采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455612
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022844
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387