Predicting High‐Flow Nasal Cannula Oxygen Therapy Failure in Patients With Acute Hypoxaemic Respiratory Failure Using Machine Learning: Model Development and External Validation

鼻插管 医学 接收机工作特性 格拉斯哥昏迷指数 机械通风 插管 机器学习 急诊医学 重症监护室 观察研究 呼吸衰竭 重症监护医学 套管 麻醉 外科 计算机科学 内科学
作者
Hongtao Cheng,Zichen Wang,Mei Feng,Yonglan Tang,Xiaoyu Zheng,Xiaoshen Zhang,Jun Lyu
出处
期刊:Journal of Clinical Nursing [Wiley]
标识
DOI:10.1111/jocn.17518
摘要

ABSTRACT Aims and Objectives To develop and validate a prediction model for high‐flow nasal cannula (HFNC) failure in patients with acute hypoxaemic respiratory failure (AHRF). Background AHRF accounts for a major proportion of intensive care unit (ICU) admissions and is associated with high mortality. HFNC is a non‐invasive respiratory support technique that can improve patient oxygenation. However, HFNC failure, defined as the need for escalation to invasive mechanical ventilation, can lead to delayed intubation, prolonged mechanical ventilation and increased risk of mortality. Timely and accurate prediction of HFNC failure has important clinical implications. Machine learning (ML) can improve clinical prediction. Design Multicentre observational study. Methods This study analysed 581 patients from an academic medical centre in Boston and 180 patients from Guangzhou, China treated with HFNC for AHRF. The Boston dataset was randomly divided into a training set (90%, n = 522) and an internal validation set (10%, n = 59), and the model was externally validated using the Guangzhou dataset ( n = 180). A random forest (RF)‐based feature selection method was used to identify predictive factors. Nine machine learning algorithms were selected to build the predictive model. The area under the receiver operating characteristic curve (AUC) and performance evaluation parameters were used to evaluate the models. Results The final model included 38 features selected using the RF method, with additional input from clinical specialists. Models based on ensemble learning outperformed other models (internal validation AUC: 0.83; external validation AUC: 0.75). Important predictors of HFNC failure include Glasgow Coma Scale scores and Sequential Organ Failure Assessment scores, albumin levels measured during HFNC treatment, ROX index at ICU admission and sepsis. Conclusions This study developed an interpretable ML model that accurately predicts the risk of HFNC failure in patients with AHRF. Relevance to Clinical Practice Clinicians and nurses can use ML models for early risk assessment and decision support in AHRF patients receiving HFNC. Reporting Method TRIPOD checklist for prediction model studies was followed in this study. Patient or Public Contribution Patients were involved in the sample of the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crescent完成签到 ,获得积分10
1秒前
无奈傲菡发布了新的文献求助10
1秒前
烟花应助123号采纳,获得10
4秒前
超帅的遥完成签到,获得积分10
4秒前
Zxc完成签到,获得积分10
5秒前
lbt完成签到 ,获得积分10
6秒前
yao完成签到 ,获得积分10
7秒前
7秒前
9秒前
10秒前
10秒前
doudou完成签到 ,获得积分10
10秒前
BCS完成签到,获得积分10
10秒前
领导范儿应助KYN采纳,获得10
10秒前
11秒前
独特的莫言完成签到,获得积分10
13秒前
lin发布了新的文献求助10
14秒前
aero完成签到 ,获得积分10
16秒前
123号完成签到,获得积分10
18秒前
充电宝应助TT采纳,获得10
20秒前
21秒前
21秒前
英姑应助荒野星辰采纳,获得10
23秒前
23秒前
YHY完成签到,获得积分10
25秒前
科研通AI5应助魏伯安采纳,获得10
25秒前
caoyy发布了新的文献求助10
25秒前
26秒前
27秒前
张喻235532完成签到,获得积分10
28秒前
失眠虔纹发布了新的文献求助10
29秒前
香蕉觅云应助糊涂的小伙采纳,获得10
29秒前
29秒前
sutharsons应助科研通管家采纳,获得200
31秒前
打打应助科研通管家采纳,获得10
31秒前
axin应助科研通管家采纳,获得10
31秒前
丘比特应助科研通管家采纳,获得10
31秒前
小蘑菇应助科研通管家采纳,获得10
31秒前
上官若男应助科研通管家采纳,获得10
31秒前
无花果应助科研通管家采纳,获得10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849