Predicting High‐Flow Nasal Cannula Oxygen Therapy Failure in Patients With Acute Hypoxaemic Respiratory Failure Using Machine Learning: Model Development and External Validation

鼻插管 医学 接收机工作特性 格拉斯哥昏迷指数 机械通风 插管 机器学习 急诊医学 重症监护室 观察研究 呼吸衰竭 重症监护医学 套管 麻醉 外科 计算机科学 内科学
作者
Hongtao Cheng,Zichen Wang,Mei Feng,Yonglan Tang,Xiaoyu Zheng,Xiaoshen Zhang,Jun Lyu
出处
期刊:Journal of Clinical Nursing [Wiley]
标识
DOI:10.1111/jocn.17518
摘要

ABSTRACT Aims and Objectives To develop and validate a prediction model for high‐flow nasal cannula (HFNC) failure in patients with acute hypoxaemic respiratory failure (AHRF). Background AHRF accounts for a major proportion of intensive care unit (ICU) admissions and is associated with high mortality. HFNC is a non‐invasive respiratory support technique that can improve patient oxygenation. However, HFNC failure, defined as the need for escalation to invasive mechanical ventilation, can lead to delayed intubation, prolonged mechanical ventilation and increased risk of mortality. Timely and accurate prediction of HFNC failure has important clinical implications. Machine learning (ML) can improve clinical prediction. Design Multicentre observational study. Methods This study analysed 581 patients from an academic medical centre in Boston and 180 patients from Guangzhou, China treated with HFNC for AHRF. The Boston dataset was randomly divided into a training set (90%, n = 522) and an internal validation set (10%, n = 59), and the model was externally validated using the Guangzhou dataset ( n = 180). A random forest (RF)‐based feature selection method was used to identify predictive factors. Nine machine learning algorithms were selected to build the predictive model. The area under the receiver operating characteristic curve (AUC) and performance evaluation parameters were used to evaluate the models. Results The final model included 38 features selected using the RF method, with additional input from clinical specialists. Models based on ensemble learning outperformed other models (internal validation AUC: 0.83; external validation AUC: 0.75). Important predictors of HFNC failure include Glasgow Coma Scale scores and Sequential Organ Failure Assessment scores, albumin levels measured during HFNC treatment, ROX index at ICU admission and sepsis. Conclusions This study developed an interpretable ML model that accurately predicts the risk of HFNC failure in patients with AHRF. Relevance to Clinical Practice Clinicians and nurses can use ML models for early risk assessment and decision support in AHRF patients receiving HFNC. Reporting Method TRIPOD checklist for prediction model studies was followed in this study. Patient or Public Contribution Patients were involved in the sample of the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sss发布了新的文献求助10
1秒前
繁星完成签到,获得积分10
2秒前
bayes111发布了新的文献求助30
2秒前
George Will完成签到,获得积分10
2秒前
2秒前
sylvia完成签到,获得积分10
3秒前
来年完成签到,获得积分10
3秒前
3秒前
NEO完成签到 ,获得积分10
3秒前
zhangnan完成签到,获得积分10
3秒前
哈哈哈发布了新的文献求助10
3秒前
如栩发布了新的文献求助10
3秒前
nya完成签到,获得积分10
4秒前
5秒前
force完成签到 ,获得积分10
5秒前
5秒前
飞光完成签到,获得积分20
5秒前
星际完成签到,获得积分10
5秒前
艾菲儿完成签到 ,获得积分10
6秒前
Kelly完成签到,获得积分10
6秒前
6秒前
一路生花完成签到,获得积分10
7秒前
Yola完成签到,获得积分10
7秒前
7秒前
7秒前
白马爱毛驴完成签到,获得积分10
8秒前
研友_ZrBNxZ发布了新的文献求助30
8秒前
roselau完成签到,获得积分0
8秒前
酷波er应助看客采纳,获得10
9秒前
伟川周完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
愉快凌晴完成签到,获得积分10
12秒前
英姑应助如栩采纳,获得10
12秒前
123完成签到,获得积分10
12秒前
Rainbow完成签到,获得积分10
14秒前
土豆发布了新的文献求助10
14秒前
hhhhhhhhhh完成签到 ,获得积分10
14秒前
栗爷完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477100
求助须知:如何正确求助?哪些是违规求助? 4578970
关于积分的说明 14365700
捐赠科研通 4506975
什么是DOI,文献DOI怎么找? 2469615
邀请新用户注册赠送积分活动 1456828
关于科研通互助平台的介绍 1430841