Predicting High‐Flow Nasal Cannula Oxygen Therapy Failure in Patients With Acute Hypoxaemic Respiratory Failure Using Machine Learning: Model Development and External Validation

鼻插管 医学 接收机工作特性 格拉斯哥昏迷指数 机械通风 插管 机器学习 急诊医学 重症监护室 观察研究 呼吸衰竭 重症监护医学 套管 麻醉 外科 计算机科学 内科学
作者
Hongtao Cheng,Zichen Wang,Mei Feng,Yonglan Tang,Xiaoyu Zheng,Xiaoshen Zhang,Jun Lyu
出处
期刊:Journal of Clinical Nursing [Wiley]
标识
DOI:10.1111/jocn.17518
摘要

ABSTRACT Aims and Objectives To develop and validate a prediction model for high‐flow nasal cannula (HFNC) failure in patients with acute hypoxaemic respiratory failure (AHRF). Background AHRF accounts for a major proportion of intensive care unit (ICU) admissions and is associated with high mortality. HFNC is a non‐invasive respiratory support technique that can improve patient oxygenation. However, HFNC failure, defined as the need for escalation to invasive mechanical ventilation, can lead to delayed intubation, prolonged mechanical ventilation and increased risk of mortality. Timely and accurate prediction of HFNC failure has important clinical implications. Machine learning (ML) can improve clinical prediction. Design Multicentre observational study. Methods This study analysed 581 patients from an academic medical centre in Boston and 180 patients from Guangzhou, China treated with HFNC for AHRF. The Boston dataset was randomly divided into a training set (90%, n = 522) and an internal validation set (10%, n = 59), and the model was externally validated using the Guangzhou dataset ( n = 180). A random forest (RF)‐based feature selection method was used to identify predictive factors. Nine machine learning algorithms were selected to build the predictive model. The area under the receiver operating characteristic curve (AUC) and performance evaluation parameters were used to evaluate the models. Results The final model included 38 features selected using the RF method, with additional input from clinical specialists. Models based on ensemble learning outperformed other models (internal validation AUC: 0.83; external validation AUC: 0.75). Important predictors of HFNC failure include Glasgow Coma Scale scores and Sequential Organ Failure Assessment scores, albumin levels measured during HFNC treatment, ROX index at ICU admission and sepsis. Conclusions This study developed an interpretable ML model that accurately predicts the risk of HFNC failure in patients with AHRF. Relevance to Clinical Practice Clinicians and nurses can use ML models for early risk assessment and decision support in AHRF patients receiving HFNC. Reporting Method TRIPOD checklist for prediction model studies was followed in this study. Patient or Public Contribution Patients were involved in the sample of the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
TCMning发布了新的文献求助10
1秒前
2秒前
3秒前
yk123完成签到,获得积分10
4秒前
5秒前
5秒前
太渊完成签到 ,获得积分10
6秒前
7秒前
Lucas应助X7采纳,获得10
7秒前
搜集达人应助百招采纳,获得10
7秒前
十一发布了新的文献求助10
7秒前
9秒前
dxh发布了新的文献求助10
9秒前
12秒前
12秒前
neckerzhu完成签到 ,获得积分10
12秒前
髦淡发布了新的文献求助20
13秒前
14秒前
雪sung发布了新的文献求助10
14秒前
cc发布了新的文献求助10
14秒前
万能图书馆应助徐蕴哲采纳,获得10
15秒前
啦啦完成签到 ,获得积分10
15秒前
niki完成签到,获得积分10
16秒前
16秒前
17秒前
20秒前
无无发布了新的文献求助10
21秒前
Zhangfu完成签到,获得积分10
21秒前
22秒前
晴天完成签到,获得积分20
22秒前
cc完成签到,获得积分10
22秒前
22秒前
言午完成签到,获得积分10
23秒前
愤怒的雁梅关注了科研通微信公众号
23秒前
23秒前
好奇宝宝完成签到,获得积分10
24秒前
朴实雨竹发布了新的文献求助30
25秒前
英姑应助hwezhu采纳,获得10
25秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117099
求助须知:如何正确求助?哪些是违规求助? 2767036
关于积分的说明 7689541
捐赠科研通 2422396
什么是DOI,文献DOI怎么找? 1286206
科研通“疑难数据库(出版商)”最低求助积分说明 620271
版权声明 599837