已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting High‐Flow Nasal Cannula Oxygen Therapy Failure in Patients With Acute Hypoxaemic Respiratory Failure Using Machine Learning: Model Development and External Validation

鼻插管 医学 接收机工作特性 格拉斯哥昏迷指数 机械通风 插管 机器学习 急诊医学 重症监护室 观察研究 呼吸衰竭 重症监护医学 套管 麻醉 外科 计算机科学 内科学
作者
Hongtao Cheng,Zichen Wang,Mei Feng,Yonglan Tang,Xiaoyu Zheng,Xiaoshen Zhang,Jun Lyu
出处
期刊:Journal of Clinical Nursing [Wiley]
标识
DOI:10.1111/jocn.17518
摘要

ABSTRACT Aims and Objectives To develop and validate a prediction model for high‐flow nasal cannula (HFNC) failure in patients with acute hypoxaemic respiratory failure (AHRF). Background AHRF accounts for a major proportion of intensive care unit (ICU) admissions and is associated with high mortality. HFNC is a non‐invasive respiratory support technique that can improve patient oxygenation. However, HFNC failure, defined as the need for escalation to invasive mechanical ventilation, can lead to delayed intubation, prolonged mechanical ventilation and increased risk of mortality. Timely and accurate prediction of HFNC failure has important clinical implications. Machine learning (ML) can improve clinical prediction. Design Multicentre observational study. Methods This study analysed 581 patients from an academic medical centre in Boston and 180 patients from Guangzhou, China treated with HFNC for AHRF. The Boston dataset was randomly divided into a training set (90%, n = 522) and an internal validation set (10%, n = 59), and the model was externally validated using the Guangzhou dataset ( n = 180). A random forest (RF)‐based feature selection method was used to identify predictive factors. Nine machine learning algorithms were selected to build the predictive model. The area under the receiver operating characteristic curve (AUC) and performance evaluation parameters were used to evaluate the models. Results The final model included 38 features selected using the RF method, with additional input from clinical specialists. Models based on ensemble learning outperformed other models (internal validation AUC: 0.83; external validation AUC: 0.75). Important predictors of HFNC failure include Glasgow Coma Scale scores and Sequential Organ Failure Assessment scores, albumin levels measured during HFNC treatment, ROX index at ICU admission and sepsis. Conclusions This study developed an interpretable ML model that accurately predicts the risk of HFNC failure in patients with AHRF. Relevance to Clinical Practice Clinicians and nurses can use ML models for early risk assessment and decision support in AHRF patients receiving HFNC. Reporting Method TRIPOD checklist for prediction model studies was followed in this study. Patient or Public Contribution Patients were involved in the sample of the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chalo发布了新的文献求助30
3秒前
现代的半兰完成签到,获得积分10
5秒前
帅气的秘密完成签到 ,获得积分10
5秒前
共享精神应助沉静的万天采纳,获得10
5秒前
迷人冥完成签到 ,获得积分10
5秒前
小杨完成签到,获得积分10
6秒前
科研通AI2S应助jiabaoyu采纳,获得10
7秒前
忧郁的寻冬完成签到,获得积分10
10秒前
善学以致用应助海绵宝宝采纳,获得10
12秒前
14秒前
玊尔完成签到,获得积分10
14秒前
15秒前
Zz完成签到,获得积分10
16秒前
iNk应助imss1采纳,获得20
17秒前
19秒前
默默洋葱发布了新的文献求助10
19秒前
灵儿完成签到,获得积分10
20秒前
秋qiu完成签到,获得积分10
23秒前
跳跃的曼寒完成签到,获得积分10
23秒前
song发布了新的文献求助10
24秒前
24秒前
25秒前
小北发布了新的文献求助10
28秒前
29秒前
maitiandehe发布了新的文献求助10
31秒前
LittleBaiOvO发布了新的文献求助10
32秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
李健应助科研通管家采纳,获得10
32秒前
所所应助科研通管家采纳,获得10
32秒前
酷波er应助科研通管家采纳,获得10
32秒前
乐乐应助科研通管家采纳,获得10
32秒前
CipherSage应助科研通管家采纳,获得10
32秒前
33秒前
33秒前
35秒前
36秒前
36秒前
晨时明月完成签到,获得积分10
36秒前
菜菜子发布了新的文献求助10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976531
求助须知:如何正确求助?哪些是违规求助? 3520576
关于积分的说明 11204042
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806555