次氯酸钠
溶解有机碳
化学
有机质
藻类
环境化学
解吸
水处理
吸附
环境工程
植物
环境科学
有机化学
生物
作者
Zhiwei Zhou,Tianjie Sun,Xing Li,Jiawei Ren,Zedong Lu,Yuankun Liu,Kai Li,Fangshu Qu
标识
DOI:10.1016/j.watres.2024.122398
摘要
Chemical moderate preoxidation for algae-laden water is an economical and prospective strategy for controlling algae and exogenous pollutants, whereas it is constrained by a lack of effective on-line evaluation and quick-response feedback method. Herein, excitation-emission matrix parallel factor analysis (EEM-PARAFAC) was used to identify cyanobacteria fluorophores after preoxidation of sodium hypochlorite (NaClO) at Excitation/Emission wavelength of 260(360)/450 nm, based on which the algal cell integrity and intracellular organic matter (IOM) release were quantitatively assessed. Machine learning modeling of fluorescence spectral data for prediction of moderate preoxidation using NaClO was established. The optimal NaClO dosage for moderate preoxidation depended on algal density, growth phases, and organic matter concentrations in source water matrices. Low doses of NaClO (<0.5 mg/L) led to short-term desorption of surface-adsorbed organic matter (S-AOM) without compromising algal cell integrity, whereas high doses of NaClO (≥0.5 mg/L) quickly caused cell damage. The optimal NaClO dosage increased from 0.2-0.3 mg/L to 0.9-1.2 mg/L, corresponding to the source water with algal densities from 0.1 × 10⁶ to 2.0 × 10⁶ cells/mL. Different growth stages required varying NaClO doses: stationary phase cells needed 0.3-0.5 mg/L, log phase cells 0.6-0.8 mg/L, and decaying cells 2.0-2.5 mg/L. The presence of natural organic matter and S-AOM increased the NaClO dosage limit with higher dissolved organic carbon (DOC) concentrations (1.00 mg/L DOC required 0.8-1.0 mg/L NaClO, while 2.20 mg/L DOC required 1.5-2.0 mg/L). Compared to other predictive models, the machine learning model (Gaussian process regression-Matern (0.5)) performed best, achieving R
科研通智能强力驱动
Strongly Powered by AbleSci AI