Predicting soil loss in small watersheds under different emission scenarios from CMIP6 using random forests

环境科学 水文学(农业) 土壤流失 随机森林 土壤科学 地质学 地貌学 腐蚀 岩土工程 计算机科学 机器学习
作者
Yulan Chen,Nan Wang,Juying Jiao,Jianjun Li,Leichao Bai,Yue Liang,Yanhong Wei,Ziqi Zhang,Xu Qian,Zhixin Zhang,Jiaxi Wang
出处
期刊:Earth Surface Processes and Landforms [Wiley]
标识
DOI:10.1002/esp.5980
摘要

Abstract Soil loss is a common land degradation process worldwide, which is impacted by land use and climate change. In this study, random forests (RF) were first used to establish a soil loss model at the scale of a small watershed in the hilly‐gully region of the Loess Plateau based on the field observation data. Subsequently, the model was used to predict soil loss in the Chabagou watershed under the historical (1990–2020) and future emission scenarios, namely SSP1–2.6 (low‐emission), SSP2–4.5 (medium‐emission) and SSP5–8.5 (high‐emission) (2030–2,100) from the Coupled Model Intercomparison Project Phases 6 (CMIP6). In the RF model, the coefficient of determination (R 2 ) and Nash‐Sutcliffe coefficient of efficiency (NS) were both greater than 0.86, and the RMSE‐observations standard deviation ratio (RSR) was less than 0.36. Additionally, the RF‐based model had higher simulation accuracy and robustness than those of the previous soil loss models, indicating its potential for wider applications in simulating soil loss. Compared with soil loss between 1990 and 1999, climate change led to a 35.36% increase in soil loss, while land use change resulted in an 11.13% reduction from 2000 to 2020 in the Chabagou watershed. This reveals that the current land use management could not effectively counterbalance the soil loss caused by rainstorms. Furthermore, compared with the historical period (1990–2020), under SSP1–2.6, SSP2–4.5 and SSP5–8.5 (2030–2,100), the soil loss rates without land use change would be increased by 6.01%, 19.11% and 35.35%, while the soil loss rates with land use change would be changed by −5.88%, +4.41% and +19.12%, respectively. These results help to provide a scientific basis for enhancing the capacity to respond to climate change and mitigation of soil and water loss on the Loess Plateau.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Daiys完成签到,获得积分10
1秒前
可爱的函函应助徐炎采纳,获得10
1秒前
1秒前
Lucas应助理li采纳,获得10
1秒前
莫里完成签到,获得积分10
1秒前
未明的感觉完成签到,获得积分10
2秒前
LHX完成签到,获得积分10
2秒前
DDD完成签到,获得积分10
2秒前
3秒前
sf发布了新的文献求助20
3秒前
紫薰完成签到,获得积分10
3秒前
3秒前
3秒前
马儿完成签到,获得积分10
4秒前
5秒前
yangsir完成签到,获得积分10
5秒前
sys完成签到,获得积分10
6秒前
传奇3应助开心的西瓜采纳,获得10
7秒前
kk99123应助刘岩采纳,获得10
7秒前
zp发布了新的文献求助10
7秒前
Aria完成签到,获得积分10
7秒前
8秒前
领导范儿应助xiaoju采纳,获得10
8秒前
南宫书瑶完成签到,获得积分10
8秒前
酸菜完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
mk完成签到,获得积分10
10秒前
深情的大碗完成签到 ,获得积分10
10秒前
一崽完成签到,获得积分10
11秒前
酸菜发布了新的文献求助10
11秒前
光电效应完成签到,获得积分10
11秒前
陆帅帅他义父完成签到,获得积分10
12秒前
12秒前
123456789完成签到,获得积分20
12秒前
12秒前
活泼的蘑菇完成签到 ,获得积分10
12秒前
FashionBoy应助qhd采纳,获得10
13秒前
王东完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5348442
求助须知:如何正确求助?哪些是违规求助? 4482447
关于积分的说明 13951205
捐赠科研通 4381258
什么是DOI,文献DOI怎么找? 2407251
邀请新用户注册赠送积分活动 1399895
关于科研通互助平台的介绍 1373137