材料科学
电镀(地质)
锌
金属
氢
冶金
纳米技术
化学
地质学
地球物理学
有机化学
作者
Yang Yang,Ruijie Zhu,Gang Wu,Wuhai Yang,Huijun Yang,Eunjoo Yoo
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-07-10
标识
DOI:10.1021/acsnano.4c03074
摘要
The development of highly reversible zinc (Zn) metal anodes is pivotal for determining the feasibility of rechargeable aqueous Zn batteries. Our research quantitively evalulates how the hydrogen evolution reaction (HER) adversely affects Zn reversibility in batteries and emphasizes the importance of substrate design in modulating HER and its associated side reactions. When the cathodic reaction is dominated by HER, the Zn electrode exhibits low plating/stripping efficiency, characterized by extensive coverage of a passivation layer that encompasses the electrochemical inactive Zn. Therefore, we propose a strike-plating strategy that modifies the pristine substrate by initiating Zn plating at a high current density for a short time. This straightforward and effective approach has been proven to suppress hydrogen evolution and transform the electrodeposition mode into one dominated by Zn reduction. Notably, Zn metal exhibits exceptionally high average reversibility of 98.80% over 200 h on a stainless steel substrate, which was typically precluded in aqueous electrolytes because of their favorable HER capability. Additionally, our strike-plating strategy demonstrates an appliable pathway to achieve high Zn reversibility on Cu substrate, showing an average efficiency of 99.83% over 540 h at a high areal capacity of 10 mAh cm
科研通智能强力驱动
Strongly Powered by AbleSci AI