已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Habitat radiomics and deep learning fusion nomogram to predict EGFR mutation status in stage I non-small cell lung cancer: a multicenter study

列线图 无线电技术 接收机工作特性 阶段(地层学) 肿瘤科 医学 肺癌 人工智能 内科学 机器学习 放射科 计算机科学 生物 古生物学
作者
Jingran Wu,Hao Meng,Lin Zhou,Meiling Wang,Shanxiu Jin,Hongjuan Ji,Bona Liu,Peng Jin,Cheng Du
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:4
标识
DOI:10.1038/s41598-024-66751-1
摘要

Develop a radiomics nomogram that integrates deep learning, radiomics, and clinical variables to predict epidermal growth factor receptor (EGFR) mutation status in patients with stage I non-small cell lung cancer (NSCLC). We retrospectively included 438 patients who underwent curative surgery and completed driver-gene mutation tests for stage I NSCLC from four academic medical centers. Predictive models were established by extracting and analyzing radiomic features in intratumoral, peritumoral, and habitat regions of CT images to identify EGFR mutation status in stage I NSCLC. Additionally, three deep learning models based on the intratumoral region were constructed. A nomogram was developed by integrating representative radiomic signatures, deep learning, and clinical features. Model performance was assessed by calculating the area under the receiver operating characteristic (ROC) curve. The established habitat radiomics features demonstrated encouraging performance in discriminating between EGFR mutant and wild-type, with predictive ability superior to other single models (AUC 0.886, 0.812, and 0.790 for the training, validation, and external test sets, respectively). The radiomics-based nomogram exhibited excellent performance, achieving the highest AUC values of 0.917, 0.837, and 0.809 in the training, validation, and external test sets, respectively. Decision curve analysis (DCA) indicated that the nomogram provided a higher net benefit than other radiomics models, offering valuable information for treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zbx完成签到,获得积分10
1秒前
搜集达人应助陈哈哈采纳,获得10
3秒前
3秒前
kkpzc完成签到 ,获得积分10
3秒前
跳跃的曼寒完成签到,获得积分10
4秒前
6秒前
9秒前
10秒前
搜集达人应助科研1采纳,获得10
10秒前
10秒前
12秒前
江知之完成签到 ,获得积分0
13秒前
14秒前
多比完成签到 ,获得积分10
15秒前
15秒前
着急的若魔完成签到,获得积分10
16秒前
SciGPT应助KDS采纳,获得10
17秒前
北国发布了新的文献求助10
18秒前
良药发布了新的文献求助10
20秒前
神冰小酱完成签到,获得积分10
22秒前
自由的未来完成签到,获得积分10
24秒前
26秒前
赖皮蛇完成签到,获得积分10
28秒前
可乐不加冰完成签到 ,获得积分10
28秒前
29秒前
科研1发布了新的文献求助10
31秒前
阿九发布了新的文献求助10
33秒前
shjyang完成签到,获得积分10
34秒前
iNk应助Fury采纳,获得20
36秒前
38秒前
shame完成签到 ,获得积分10
39秒前
Wilddeer完成签到 ,获得积分10
41秒前
42秒前
midokaori发布了新的文献求助10
43秒前
一颗有理想的蛋完成签到 ,获得积分10
43秒前
凡迪亚比给罗小球的求助进行了留言
45秒前
46秒前
共享精神应助知性的采珊采纳,获得10
47秒前
49秒前
顾矜应助andrele采纳,获得30
53秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210