Improving Predictive Efficacy for Drug Resistance in Novel HIV-1 Protease Inhibitors through Transfer Learning Mechanisms

药品 蛋白酶 HIV-1蛋白酶 抗药性 人类免疫缺陷病毒(HIV) 药理学 蛋白酶抑制剂(药理学) 学习迁移 计算生物学 病毒学 医学 化学 计算机科学 抗逆转录病毒疗法 生物 机器学习 病毒载量 微生物学 生物化学
作者
Huseyin Tunc,Sümeyye Yılmaz,Büşra Nur Darendeli Kiraz,Murat Sarı,Seyfullah Kotil,Özge Şensoy,Serdar Durdağı
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (20): 7844-7863
标识
DOI:10.1021/acs.jcim.4c01037
摘要

The human immunodeficiency virus presents a significant global health challenge due to its rapid mutation and the development of resistance mechanisms against antiretroviral drugs. Recent studies demonstrate the impressive performance of machine learning (ML) and deep learning (DL) models in predicting the drug resistance profile of specific FDA-approved inhibitors. However, generalizing ML and DL models to learn not only from isolates but also from inhibitor representations remains challenging for HIV-1 infection. We propose a novel drug-isolate-fold change (DIF) model framework that aims to predict drug resistance score directly from the protein sequence and inhibitor representation. Various ML and DL models, inhibitor representations, and protein representations were analyzed through realistic validation mechanisms. To enhance the molecular learning capacity of DIF models, we employ a transfer learning approach by pretraining a graph neural network (GNN) model for activity prediction on a data set of 4855 HIV-1 protease inhibitors (PIs). By performing various realistic validation strategies on internal and external genotype–phenotype data sets, we statistically show that the learned representations of inhibitors improve the predictive ability of DIF-based ML and DL models. We achieved an accuracy of 0.802, AUROC of 0.874, and r of 0.727 for the unseen external PIs. By comparing the DIF-based models with a null model consisting of isolate-fold change (IF) architecture, it is observed that the DIF models significantly benefit from molecular representations. Combined results from various testing strategies and statistical tests confirm the effectiveness of DIF models in testing novel PIs for drug resistance in the presence of an isolate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南国有佳人完成签到,获得积分10
1秒前
星辰大海应助fzh采纳,获得20
1秒前
yuHS发布了新的文献求助10
4秒前
Owen应助wei采纳,获得10
4秒前
李健应助何佳妮采纳,获得10
5秒前
英姑应助天真的冬寒采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
10秒前
桐桐应助高姐姐采纳,获得10
11秒前
lucy4472完成签到,获得积分20
11秒前
12秒前
YH应助尊敬寒松采纳,获得50
12秒前
Tsui发布了新的文献求助10
12秒前
14秒前
Tuan发布了新的文献求助10
14秒前
九湖夷上发布了新的文献求助10
15秒前
Flying016发布了新的文献求助30
16秒前
研友_ZrldbL发布了新的文献求助30
16秒前
17秒前
Miracle发布了新的文献求助10
18秒前
Ting完成签到,获得积分10
19秒前
CZYW完成签到 ,获得积分10
19秒前
21秒前
Tuan完成签到,获得积分10
24秒前
黄东胜完成签到,获得积分10
24秒前
27秒前
Yin完成签到,获得积分10
27秒前
28秒前
28秒前
Orange应助Miracle采纳,获得10
28秒前
wolr发布了新的文献求助10
28秒前
笨笨完成签到,获得积分10
29秒前
传奇3应助程程采纳,获得10
29秒前
29秒前
天真的冬寒完成签到,获得积分20
29秒前
32秒前
Yuanyuan发布了新的文献求助10
33秒前
linnnn发布了新的文献求助10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959401
求助须知:如何正确求助?哪些是违规求助? 3505622
关于积分的说明 11124998
捐赠科研通 3237410
什么是DOI,文献DOI怎么找? 1789120
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844