Improving Predictive Efficacy for Drug Resistance in Novel HIV-1 Protease Inhibitors through Transfer Learning Mechanisms

药品 蛋白酶 HIV-1蛋白酶 抗药性 人类免疫缺陷病毒(HIV) 药理学 蛋白酶抑制剂(药理学) 学习迁移 计算生物学 病毒学 医学 化学 计算机科学 抗逆转录病毒疗法 生物 机器学习 病毒载量 微生物学 生物化学
作者
Huseyin Tunc,Sümeyye Yılmaz,Büşra Nur Darendeli Kiraz,Murat Sarı,Seyfullah Kotil,Özge Şensoy,Serdar Durdağı
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01037
摘要

The human immunodeficiency virus presents a significant global health challenge due to its rapid mutation and the development of resistance mechanisms against antiretroviral drugs. Recent studies demonstrate the impressive performance of machine learning (ML) and deep learning (DL) models in predicting the drug resistance profile of specific FDA-approved inhibitors. However, generalizing ML and DL models to learn not only from isolates but also from inhibitor representations remains challenging for HIV-1 infection. We propose a novel drug-isolate-fold change (DIF) model framework that aims to predict drug resistance score directly from the protein sequence and inhibitor representation. Various ML and DL models, inhibitor representations, and protein representations were analyzed through realistic validation mechanisms. To enhance the molecular learning capacity of DIF models, we employ a transfer learning approach by pretraining a graph neural network (GNN) model for activity prediction on a data set of 4855 HIV-1 protease inhibitors (PIs). By performing various realistic validation strategies on internal and external genotype–phenotype data sets, we statistically show that the learned representations of inhibitors improve the predictive ability of DIF-based ML and DL models. We achieved an accuracy of 0.802, AUROC of 0.874, and r of 0.727 for the unseen external PIs. By comparing the DIF-based models with a null model consisting of isolate-fold change (IF) architecture, it is observed that the DIF models significantly benefit from molecular representations. Combined results from various testing strategies and statistical tests confirm the effectiveness of DIF models in testing novel PIs for drug resistance in the presence of an isolate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
vv发布了新的文献求助10
1秒前
2秒前
Andrew完成签到,获得积分10
4秒前
沉默的阁发布了新的文献求助20
6秒前
asdfqwer发布了新的文献求助10
7秒前
可爱因子发布了新的文献求助10
7秒前
清歌完成签到,获得积分20
8秒前
卢不评发布了新的文献求助10
8秒前
10秒前
在水一方应助美好芳采纳,获得10
10秒前
vv完成签到,获得积分10
11秒前
个性的紫菜应助summer夏采纳,获得10
11秒前
清歌发布了新的文献求助10
12秒前
12秒前
Dana完成签到 ,获得积分10
14秒前
可爱因子完成签到,获得积分20
16秒前
mdie发布了新的文献求助10
16秒前
充电宝应助无心的行云采纳,获得10
16秒前
16秒前
卢不评完成签到,获得积分10
16秒前
小马甲应助机智的傲柏采纳,获得10
16秒前
乐观凝梦发布了新的文献求助10
17秒前
小李完成签到,获得积分10
17秒前
17秒前
整齐尔容发布了新的文献求助10
18秒前
18秒前
俏皮诺言完成签到,获得积分10
18秒前
doocan完成签到,获得积分10
19秒前
19秒前
Tangyartie完成签到 ,获得积分10
21秒前
mdie完成签到,获得积分10
22秒前
22秒前
阳光海云发布了新的文献求助50
23秒前
现代雪晴完成签到,获得积分10
24秒前
Ava应助苹果哲瀚采纳,获得10
25秒前
25秒前
26秒前
科研通AI2S应助与落采纳,获得10
28秒前
Hhh发布了新的文献求助10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140624
求助须知:如何正确求助?哪些是违规求助? 2791434
关于积分的说明 7798983
捐赠科研通 2447824
什么是DOI,文献DOI怎么找? 1302046
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194