亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-precision and lightweight small-target detection algorithm for low-cost edge intelligence

计算机科学 GSM演进的增强数据速率 算法 人工智能 数据挖掘
作者
Linsong Xiao,Wenzao Li,Sai Yao,Hantao Liu,Dehao Ren
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-75243-1
摘要

The proliferation of edge devices driven by advancements in Internet of Things (IoT) technology has intensified the challenge of achieving high-precision small target detection, as it demands extensive computational resources. This amplifies the conflict between the need for precise detection and the requirement for cost-efficiency across numerous edge devices. To solve this problem, this paper introduces an enhanced target detection algorithm, MSGD-YOLO, built upon YOLOv8. The Faster Implementation of CSP Bottleneck with 2 convolutions (C2f) module is enhanced through the integration of the Ghost module and dynamic convolution, resulting in a more lightweight architecture while enhancing feature generation. Additionally, Spatial Pyramid Pooling with Enhanced Local Attention Network (SPPELAN) replaces Spatial Pyramid Pooling Fast (SPPF) to expand the receptive field, optimizing multi-level feature aggregation for improved performance. Furthermore, a novel Multi-Scale Ghost Convolution (MSGConv) and Multi-Scale Generalized Feature Pyramid Network (MSGPFN) are introduced to enhance feature fusion and integrate multi-scale information. Finally, four optimized dynamic convolutional detection heads are employed to capture target features more accurately and improve small target detection precision. Evaluation on the VisDrone2019 dataset shows that compared with YOLOv8-n, MSGD-YOLO improves mAP@50 and mAP@50-95 by 14.1% and 11.2%, respectively. In addition, the model not only achieves a 16.1% reduction in parameters but also attains a processing speed of 24.6 Frames Per Second (FPS) on embedded devices, thereby fulfilling real-time detection requirements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮云完成签到,获得积分10
15秒前
铁臂阿童木完成签到,获得积分10
24秒前
26秒前
wanci应助zhangxr采纳,获得10
27秒前
28秒前
ssy完成签到 ,获得积分10
28秒前
29秒前
30秒前
32秒前
Xiao风啊发布了新的文献求助10
32秒前
35秒前
Akim应助Xiao风啊采纳,获得10
43秒前
lxr完成签到 ,获得积分10
1分钟前
AireenBeryl531应助kytwenxian采纳,获得20
1分钟前
大模型应助picapica668采纳,获得10
1分钟前
优雅的凝阳完成签到 ,获得积分10
1分钟前
1分钟前
淡定的苠关注了科研通微信公众号
1分钟前
Xiao风啊发布了新的文献求助10
1分钟前
寻道图强应助zhang采纳,获得30
1分钟前
梅花红豆完成签到,获得积分10
2分钟前
2分钟前
2分钟前
充电宝应助Xiao风啊采纳,获得10
2分钟前
2分钟前
Bowman完成签到,获得积分10
2分钟前
淡定的苠发布了新的文献求助10
2分钟前
笑点低的凡之完成签到,获得积分10
2分钟前
2分钟前
ghx完成签到,获得积分10
2分钟前
小周小周完成签到 ,获得积分10
2分钟前
ghx发布了新的文献求助10
2分钟前
kytwenxian完成签到,获得积分10
2分钟前
2分钟前
2分钟前
阿尼亚发布了新的文献求助10
2分钟前
哈哈哈哈完成签到 ,获得积分10
2分钟前
Nefelibata完成签到,获得积分10
2分钟前
Limerencia完成签到,获得积分10
3分钟前
完美世界应助阿文采纳,获得10
3分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139515
求助须知:如何正确求助?哪些是违规求助? 2790418
关于积分的说明 7795156
捐赠科研通 2446832
什么是DOI,文献DOI怎么找? 1301450
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146