High-precision and lightweight small-target detection algorithm for low-cost edge intelligence

计算机科学 GSM演进的增强数据速率 算法 人工智能 数据挖掘
作者
Linsong Xiao,Wenzao Li,Sai Yao,Hantao Liu,Dehao Ren
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-75243-1
摘要

The proliferation of edge devices driven by advancements in Internet of Things (IoT) technology has intensified the challenge of achieving high-precision small target detection, as it demands extensive computational resources. This amplifies the conflict between the need for precise detection and the requirement for cost-efficiency across numerous edge devices. To solve this problem, this paper introduces an enhanced target detection algorithm, MSGD-YOLO, built upon YOLOv8. The Faster Implementation of CSP Bottleneck with 2 convolutions (C2f) module is enhanced through the integration of the Ghost module and dynamic convolution, resulting in a more lightweight architecture while enhancing feature generation. Additionally, Spatial Pyramid Pooling with Enhanced Local Attention Network (SPPELAN) replaces Spatial Pyramid Pooling Fast (SPPF) to expand the receptive field, optimizing multi-level feature aggregation for improved performance. Furthermore, a novel Multi-Scale Ghost Convolution (MSGConv) and Multi-Scale Generalized Feature Pyramid Network (MSGPFN) are introduced to enhance feature fusion and integrate multi-scale information. Finally, four optimized dynamic convolutional detection heads are employed to capture target features more accurately and improve small target detection precision. Evaluation on the VisDrone2019 dataset shows that compared with YOLOv8-n, MSGD-YOLO improves mAP@50 and mAP@50-95 by 14.1% and 11.2%, respectively. In addition, the model not only achieves a 16.1% reduction in parameters but also attains a processing speed of 24.6 Frames Per Second (FPS) on embedded devices, thereby fulfilling real-time detection requirements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
呆呆发布了新的文献求助10
刚刚
冬菊完成签到 ,获得积分10
刚刚
蓝天黄土发布了新的文献求助20
1秒前
摆烂小鱼鱼完成签到 ,获得积分10
1秒前
Orange应助健忘芷采纳,获得10
1秒前
月星发布了新的文献求助10
1秒前
丘比特应助小丁要努力采纳,获得10
2秒前
2秒前
RUI发布了新的文献求助10
2秒前
2秒前
Min完成签到,获得积分10
2秒前
獭祭鱼完成签到,获得积分10
3秒前
3秒前
3秒前
复杂晓丝应助Xinxxx采纳,获得10
3秒前
4秒前
科研通AI6应助hxnz2001采纳,获得10
4秒前
4秒前
文艺鞋子发布了新的文献求助10
4秒前
Wei完成签到 ,获得积分10
5秒前
虞鱼发布了新的文献求助10
5秒前
陆仓颉完成签到,获得积分10
6秒前
罗擎完成签到,获得积分10
6秒前
LioraLi完成签到,获得积分20
6秒前
Zoey Young发布了新的文献求助10
6秒前
神奇的海螺完成签到 ,获得积分10
7秒前
7秒前
meng发布了新的文献求助30
7秒前
chy发布了新的文献求助10
7秒前
肃肃其羽完成签到 ,获得积分10
7秒前
DDangyl发布了新的文献求助10
8秒前
浮游应助111采纳,获得10
8秒前
9秒前
科研通AI6应助顺利鸡采纳,获得10
9秒前
9秒前
stan212发布了新的文献求助10
9秒前
fanfan完成签到 ,获得积分10
9秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618686
求助须知:如何正确求助?哪些是违规求助? 4703697
关于积分的说明 14923247
捐赠科研通 4758321
什么是DOI,文献DOI怎么找? 2550231
邀请新用户注册赠送积分活动 1513010
关于科研通互助平台的介绍 1474379