瘤胃
生物
基因组
普雷沃菌属
微生物
代谢组
反刍动物
人口
代谢组学
食品科学
生态学
细菌
发酵
生物化学
生物信息学
遗传学
基因
作物
社会学
人口学
作者
Haiying He,Chao Fang,L. Liu,Mingming Li,Wu-Jun Liu
标识
DOI:10.3390/ijms252010957
摘要
Natural or artificial selection causes animals to adapt to their environment. The adaptive changes generated by the rumen population and metabolism form the basis of ruminant evolution. In particular, the adaptive drive for environmental adaptation reflects the high-quality traits of sheep that have migrated from other places or have been distant from their origins for a long time. The Hu sheep is the most representative sheep breed in the humid and low-altitude environments (Tai Lake region) in East Asia and has been widely introduced into the arid and high-altitude environments (Tibetan Plateau and Hotan region), resulting in environmental adaptive changes in the Hu sheep. In this study, a joint analysis of the rumen microbial metagenome and metabolome was conducted on Hu sheep from different regions (area of origin and area of introduction) with the objective of investigating the quality traits of Hu sheep and identifying microorganisms that influence the adaptive drive of ruminants. The results demonstrated that the growth performance of Hu sheep was altered due to changes in rumen tissue and metabolism following their introduction to the arid area at relatively high altitude. Metagenomic and metabolomic analyses (five ramsper area) revealed that 3580 different microorganisms and 732 different metabolites were identified in the rumen fluid of arid sheep. Among these, the representative upregulated metabolites were 4,6-isocanedione, methanesulfonic acid and N2-succinyl-L-arginine, while the dominant microorganism was Prevotella ruminicola. The downregulated metabolites were identified as campesterol, teprenone and dihydroclavaminic acid, while the disadvantaged microorganisms were Dialister_succinatiphilus, Prevotella_sp._AGR2160, Prevotella_multisaccharivorax and Selenomonas_bovis. The results of the Pearson analysis indicated that the rumen microbiota and metabolite content of sheep were significantly altered and highly correlated following their relocation from a humid lowland to an arid upland. In particular, the observed changes in rumen microorganisms led to an acceleration of body metabolism, rendering sheep highly adaptable to environmental stress. Prevotella_ruminicola was identified as playing an important role in this process. These findings provide insights into the environmental adaptation mechanisms of sheep.
科研通智能强力驱动
Strongly Powered by AbleSci AI