Environment-Wide Association Study of Cognitive Function in U.S. Older Adults using the NHANES Data

联想(心理学) 全国健康与营养检查调查 老年学 认知 心理学 环境卫生 人口学 医学 社会学 精神科 人口 心理治疗师
作者
Hyuna Jang,Jiyun Lee,Vy Nguyen,Hyeong‐Moo Shin
标识
DOI:10.1101/2024.07.22.24310659
摘要

Neurodegenerative diseases pose increasing challenges to global aging populations. Cognitive decline in older adults is an initial indicator of neurodegenerative diseases, yet comprehensive research on environmental chemical exposures related to cognitive decline is limited. This study uses Environment-Wide Association Study (EWAS) framework to investigate associations of environmental chemicals with cognitive function in individuals aged ≥60 years. We used the Digit Symbol Substitution Test (DSST) scores (lower scores indicate cognitive decline) and chemical biomarker data of the U.S. National Health and Nutrition Examination Survey (NHANES) spanning four cycles (1999-2000, 2001-2002, 2011-2012, 2013-2014). We conducted multiple survey-weighted regression to identify biomarkers associated with DSST scores, penalized logit regression to estimate odds ratio (OR) of cognitive decline with identified biomarkers, and correlation network analyses to examine relationships among identified biomarkers and cognitive decline. After correction for multiple comparisons, 27 out of 173 biomarkers having a ≥10% detection rate were associated with DSST scores (q-value <0.05). Among them, increased odds of cognitive decline were associated with elevated levels of blood lead (Pb) (OR = 1.12, 95% CI: 1.01,1.42), blood 1,4-dichlorobenzene (1,4-DCB) (OR = 1.34, 95% CI: 1.17, 1.54), and urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) (OR = 1.34, 95% CI: 1.10, 1.62). Correlation network showed biomarkers that potentially impact cognitive decline upon related health conditions, such as stroke. In conclusion, leveraging the EWAS framework enables us to identify chemical biomarkers that were not previously discovered from traditional approaches of examining a small number of chemicals at a time. While our findings provide foundation for further research, longitudinal studies are warranted to elucidate causal relationships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1911988020完成签到,获得积分10
刚刚
南北完成签到,获得积分10
刚刚
1秒前
兜兜发布了新的文献求助10
2秒前
侧耳倾听发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
进步面包笑哈哈完成签到,获得积分10
4秒前
youjiwuji发布了新的文献求助10
4秒前
伶俐耳机发布了新的文献求助10
4秒前
5秒前
mage完成签到,获得积分10
6秒前
huangzr完成签到,获得积分10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
李爱国应助Lyz采纳,获得10
7秒前
hululaoqi完成签到,获得积分10
9秒前
左传琦发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
12秒前
111发布了新的文献求助10
12秒前
14秒前
再见战王发布了新的文献求助10
16秒前
orixero应助111采纳,获得10
16秒前
son发布了新的文献求助10
17秒前
19秒前
19秒前
顾矜应助Xdhcg采纳,获得10
19秒前
汉堡包应助xxl采纳,获得10
20秒前
乐乐应助闲云野鹤采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
wjqgdsvdja完成签到,获得积分10
22秒前
23秒前
黄晓完成签到,获得积分10
23秒前
隐形曼青应助chelsea采纳,获得10
25秒前
牛牛牛应助lotus采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762020
求助须知:如何正确求助?哪些是违规求助? 5533545
关于积分的说明 15401764
捐赠科研通 4898295
什么是DOI,文献DOI怎么找? 2634801
邀请新用户注册赠送积分活动 1582925
关于科研通互助平台的介绍 1538165