已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UniMiSS+: Universal Medical Self-Supervised Learning From Cross-Dimensional Unpaired Data

人工智能 计算机科学 模式识别(心理学) 机器学习
作者
Yutong Xie,Jianpeng Zhang,Yong Xia,Qi Wu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tpami.2024.3436105
摘要

Self-supervised learning (SSL) opens up huge opportunities for medical image analysis that is well known for its lack of annotations. However, aggregating massive (unlabeled) 3D medical images like computerized tomography (CT) remains challenging due to its high imaging cost and privacy restrictions. In our pilot study, we advocated bringing a wealth of 2D images like chest X-rays as compensation for the lack of 3D data, aiming to build a universal medical self-supervised representation learning framework, called UniMiSS. Especially, we designed a pyramid U- like medical Transformer (MiT) as the backbone to make UniMiSS possible to perform SSL with both 2D and 3D images. Consequently, the predecessor UniMiSS has two obvious merits compared to current 3D-specific SSL: (1) more effective - superior to learning strong representations, benefiting from more and diverse data; and (2) more versatile - suitable for various downstream tasks without the restriction on the dimensionality barrier. Unfortunately, UniMiSS did not dig deeply into the intrinsic anatomy correlation between 2D medical images and 3D volumes due to the lack of paired multi-modal/dimension patient data. In this extension paper, we propose the UniMiSS+, in which we introduce the digitally reconstructed radiographs (DRR) technology to simulate X-ray images from a CT volume to access paired CT and X-ray data. Benefiting from the paired group, we introduce an extra pair- wise constraint to boost the cross-modality correlation learning, which also can be adopted as a cross-dimension regularization to further improve the representations. We conduct expensive experiments on multiple 3D/2D medical image analysis tasks, including segmentation and classification. The results show that the proposed UniMiSS+ achieves promising performance on various downstream tasks, not only outperforming the ImageNet pre-training and other advanced SSL counterparts substantially but also improving the predecessor UniMiSS pre-training. Code is available at: https://github.com/YtongXie/UniMiSS-code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
碳酸芙兰发布了新的文献求助30
1秒前
秀丽嘉熙发布了新的文献求助10
5秒前
龚幻梦发布了新的文献求助10
5秒前
7秒前
7秒前
isabella关注了科研通微信公众号
7秒前
8秒前
小巧问芙完成签到 ,获得积分10
8秒前
LZH完成签到,获得积分20
9秒前
9秒前
9秒前
10秒前
LZH发布了新的文献求助10
12秒前
水手斤完成签到,获得积分20
13秒前
ffq发布了新的文献求助10
14秒前
二十四桥明月夜完成签到 ,获得积分20
14秒前
飞飞发布了新的文献求助10
14秒前
起风了发布了新的文献求助10
15秒前
领导范儿应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
钱多多完成签到,获得积分0
17秒前
张包子完成签到 ,获得积分10
18秒前
18秒前
飞飞完成签到,获得积分10
20秒前
万能图书馆应助LZH采纳,获得10
21秒前
22秒前
22秒前
Jasper应助起风了采纳,获得10
23秒前
27秒前
27秒前
moon发布了新的文献求助10
27秒前
木木三完成签到,获得积分10
28秒前
犹豫斩完成签到 ,获得积分10
29秒前
ylc完成签到,获得积分10
29秒前
CMCM发布了新的文献求助30
31秒前
海绵宝宝发布了新的文献求助10
31秒前
共享精神应助HDD采纳,获得10
33秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154688
求助须知:如何正确求助?哪些是违规求助? 2805501
关于积分的说明 7865044
捐赠科研通 2463690
什么是DOI,文献DOI怎么找? 1311521
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601821