已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UniMiSS+: Universal Medical Self-Supervised Learning From Cross-Dimensional Unpaired Data

人工智能 计算机科学 模式识别(心理学) 机器学习
作者
Yutong Xie,Jianpeng Zhang,Yong Xia,Qi Wu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 10021-10035 被引量:3
标识
DOI:10.1109/tpami.2024.3436105
摘要

Self-supervised learning (SSL) opens up huge opportunities for medical image analysis that is well known for its lack of annotations. However, aggregating massive (unlabeled) 3D medical images like computerized tomography (CT) remains challenging due to its high imaging cost and privacy restrictions. In our pilot study, we advocated bringing a wealth of 2D images like X-rays as compensation for the lack of 3D data, aiming to build a universal medical self-supervised representation learning framework, called UniMiSS. Especially, we designed a pyramid U-like medical Transformer (MiT) as the backbone to make UniMiSS possible to perform SSL with both 2D and 3D images. UniMiSS surpasses current 3D-specific SSL in effectiveness and versatility, excelling in various downstream tasks and overcoming the limitations of dimensionality. However, the initial version did not fully explore the anatomical correlations between 2D and 3D images due to the absence of paired multi-modal patient data. In this extension, we introduce UniMiSS+, which leverages digitally reconstructed radiographs (DRR) technology to simulate X-rays from CT volumes, providing access to paired data. Benefiting from the paired group, we introduce an extra pair-wise constraint to boost the cross modality correlation learning, which also can be adopted as a cross dimension regularization to further improve the representations. We conduct expensive experiments on multiple 3D/2D medical image analysis tasks, including segmentation and classification. The results show that our UniMiSS+ achieves promising performance on various downstream tasks, not only outperforming ImageNet pre-training and other advanced SSL counterparts but also improving the predecessor UniMiSS pre-training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xinjie完成签到,获得积分10
1秒前
HMYX完成签到 ,获得积分10
2秒前
风月难安发布了新的文献求助10
3秒前
清风明月完成签到 ,获得积分10
4秒前
4秒前
优美紫槐完成签到,获得积分10
5秒前
ComeOn发布了新的文献求助10
7秒前
7秒前
hqh发布了新的文献求助10
8秒前
嘻嘻完成签到 ,获得积分10
9秒前
13秒前
乐乐应助THEFAN采纳,获得10
13秒前
几两完成签到 ,获得积分10
14秒前
倪妮完成签到 ,获得积分10
14秒前
haprier完成签到 ,获得积分10
15秒前
无花果应助琪琪采纳,获得10
16秒前
baqiuzunzhe完成签到,获得积分10
17秒前
111完成签到 ,获得积分10
17秒前
呆萌滑板完成签到 ,获得积分10
18秒前
淡然冬灵完成签到,获得积分10
18秒前
JamesPei应助THEFAN采纳,获得10
18秒前
桐桐应助Yiyin采纳,获得10
18秒前
Chris完成签到 ,获得积分0
19秒前
SciGPT应助微课采纳,获得10
20秒前
斯文的苡完成签到,获得积分10
20秒前
头号玩家完成签到,获得积分10
20秒前
半夏黄良发布了新的文献求助10
21秒前
钟D摆完成签到 ,获得积分10
21秒前
Sherry完成签到 ,获得积分10
21秒前
serendipity完成签到 ,获得积分10
22秒前
22秒前
Ava应助THEFAN采纳,获得10
22秒前
houyoufang完成签到,获得积分10
24秒前
酒剑仙完成签到,获得积分10
24秒前
不想上班了完成签到 ,获得积分10
26秒前
领导范儿应助THEFAN采纳,获得10
26秒前
Lc20020320完成签到,获得积分10
26秒前
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705435
求助须知:如何正确求助?哪些是违规求助? 5164132
关于积分的说明 15245526
捐赠科研通 4859289
什么是DOI,文献DOI怎么找? 2607711
邀请新用户注册赠送积分活动 1558849
关于科研通互助平台的介绍 1516399