UniMiSS+: Universal Medical Self-Supervised Learning From Cross-Dimensional Unpaired Data

人工智能 计算机科学 模式识别(心理学) 机器学习
作者
Yutong Xie,Jianpeng Zhang,Yong Xia,Qi Wu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (12): 10021-10035 被引量:3
标识
DOI:10.1109/tpami.2024.3436105
摘要

Self-supervised learning (SSL) opens up huge opportunities for medical image analysis that is well known for its lack of annotations. However, aggregating massive (unlabeled) 3D medical images like computerized tomography (CT) remains challenging due to its high imaging cost and privacy restrictions. In our pilot study, we advocated bringing a wealth of 2D images like X-rays as compensation for the lack of 3D data, aiming to build a universal medical self-supervised representation learning framework, called UniMiSS. Especially, we designed a pyramid U-like medical Transformer (MiT) as the backbone to make UniMiSS possible to perform SSL with both 2D and 3D images. UniMiSS surpasses current 3D-specific SSL in effectiveness and versatility, excelling in various downstream tasks and overcoming the limitations of dimensionality. However, the initial version did not fully explore the anatomical correlations between 2D and 3D images due to the absence of paired multi-modal patient data. In this extension, we introduce UniMiSS+, which leverages digitally reconstructed radiographs (DRR) technology to simulate X-rays from CT volumes, providing access to paired data. Benefiting from the paired group, we introduce an extra pair-wise constraint to boost the cross modality correlation learning, which also can be adopted as a cross dimension regularization to further improve the representations. We conduct expensive experiments on multiple 3D/2D medical image analysis tasks, including segmentation and classification. The results show that our UniMiSS+ achieves promising performance on various downstream tasks, not only outperforming ImageNet pre-training and other advanced SSL counterparts but also improving the predecessor UniMiSS pre-training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ypp发布了新的文献求助10
刚刚
南兮发布了新的文献求助10
刚刚
thisky完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
松谦发布了新的文献求助10
1秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
yar应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
朱建军应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
自觉灵凡发布了新的文献求助10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
朱建军应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
orixero应助lw采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
4秒前
昏睡的蟠桃应助姣妹崽采纳,获得50
4秒前
yar应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
916应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
CR7应助科研通管家采纳,获得20
4秒前
4秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635