Assessing LLMs in malicious code deobfuscation of real-world malware campaigns

恶意软件 计算机安全 计算机科学 编码(集合论) 互联网隐私 程序设计语言 集合(抽象数据类型)
作者
Constantinos Patsakis,Fran Casino,Nikolaos Lykousas
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:256: 124912-124912 被引量:1
标识
DOI:10.1016/j.eswa.2024.124912
摘要

The integration of large language models (LLMs) into various cybersecurity pipelines has become increasingly prevalent, enabling the automation of numerous manual tasks and often surpassing human performance. Recognising this potential, cybersecurity researchers and practitioners are actively investigating the application of LLMs to process vast volumes of heterogeneous data for anomaly detection, potential bypass identification, attack mitigation, and fraud prevention. Moreover, LLMs' advanced capabilities in generating functional code, interpreting code context, and code summarisation present significant opportunities for reverse engineering and malware deobfuscation. In this work, we comprehensively examine the deobfuscation capabilities of state-of-the-art LLMs. Specifically, we conducted a detailed evaluation of four prominent LLMs using real-world malicious scripts from the notorious Emotet malware campaign. Our findings reveal that while current LLMs are not yet perfectly accurate, they demonstrate substantial potential in efficiently deobfuscating payloads. This study highlights the importance of fine-tuning LLMs for specialised tasks, suggesting that such optimisation could pave the way for future AI-powered threat intelligence pipelines to combat obfuscated malware. Our contributions include a thorough analysis of LLM performance in malware deobfuscation, identifying strengths and limitations, and discussing the potential for integrating LLMs into cybersecurity frameworks for enhanced threat detection and mitigation. Our experiments illustrate that LLMs can automatically and accurately extract the necessary indicators of compromise from a real-world campaign with an accuracy of 69.56% and 88.78% for the URLs and the corresponding domains of the droppers, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
那L6发布了新的文献求助10
刚刚
小蘑菇应助Hotony采纳,获得30
1秒前
写论文的完成签到 ,获得积分10
1秒前
1秒前
汉堡包应助英勇的多肉采纳,获得10
1秒前
pbj发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
小白云发布了新的文献求助30
2秒前
bigben446发布了新的文献求助30
2秒前
漂亮的不言完成签到 ,获得积分10
2秒前
2秒前
新月完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
熊熊发布了新的文献求助10
3秒前
TheMonster完成签到,获得积分10
4秒前
Mengxin发布了新的文献求助10
4秒前
4秒前
shanyuyulai完成签到 ,获得积分10
4秒前
吐丝麵包发布了新的文献求助30
4秒前
陈竺完成签到 ,获得积分10
5秒前
sunialnd完成签到,获得积分10
5秒前
852应助安详砖家采纳,获得10
5秒前
独见晓焉发布了新的文献求助10
5秒前
6秒前
李健应助白一闪采纳,获得10
6秒前
6秒前
u2u2完成签到,获得积分10
6秒前
7秒前
科研通AI2S应助ggg采纳,获得10
7秒前
7秒前
优秀星星完成签到,获得积分10
7秒前
8秒前
巴拉拉发布了新的文献求助10
8秒前
8秒前
8秒前
搜集达人应助noneo采纳,获得10
8秒前
9秒前
小二郎应助yyygc采纳,获得10
9秒前
梅梅王完成签到,获得积分10
10秒前
琦琦发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534