Assessing LLMs in malicious code deobfuscation of real-world malware campaigns

恶意软件 计算机安全 计算机科学 编码(集合论) 互联网隐私 程序设计语言 集合(抽象数据类型)
作者
Constantinos Patsakis,Fran Casino,Nikolaos Lykousas
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:256: 124912-124912 被引量:1
标识
DOI:10.1016/j.eswa.2024.124912
摘要

The integration of large language models (LLMs) into various cybersecurity pipelines has become increasingly prevalent, enabling the automation of numerous manual tasks and often surpassing human performance. Recognising this potential, cybersecurity researchers and practitioners are actively investigating the application of LLMs to process vast volumes of heterogeneous data for anomaly detection, potential bypass identification, attack mitigation, and fraud prevention. Moreover, LLMs' advanced capabilities in generating functional code, interpreting code context, and code summarisation present significant opportunities for reverse engineering and malware deobfuscation. In this work, we comprehensively examine the deobfuscation capabilities of state-of-the-art LLMs. Specifically, we conducted a detailed evaluation of four prominent LLMs using real-world malicious scripts from the notorious Emotet malware campaign. Our findings reveal that while current LLMs are not yet perfectly accurate, they demonstrate substantial potential in efficiently deobfuscating payloads. This study highlights the importance of fine-tuning LLMs for specialised tasks, suggesting that such optimisation could pave the way for future AI-powered threat intelligence pipelines to combat obfuscated malware. Our contributions include a thorough analysis of LLM performance in malware deobfuscation, identifying strengths and limitations, and discussing the potential for integrating LLMs into cybersecurity frameworks for enhanced threat detection and mitigation. Our experiments illustrate that LLMs can automatically and accurately extract the necessary indicators of compromise from a real-world campaign with an accuracy of 69.56% and 88.78% for the URLs and the corresponding domains of the droppers, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代的雁枫完成签到,获得积分10
1秒前
source发布了新的文献求助10
1秒前
ZelongWang完成签到,获得积分20
2秒前
九月亦星发布了新的文献求助10
2秒前
刘芸若诗发布了新的文献求助10
2秒前
科研通AI6应助不知道叫哈采纳,获得10
2秒前
swq发布了新的文献求助10
2秒前
3秒前
蓝朱发布了新的文献求助10
4秒前
英姑应助邵洋采纳,获得10
4秒前
搜集达人应助tigger采纳,获得10
4秒前
5秒前
小马甲应助zbszd采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
沉静傥完成签到,获得积分10
7秒前
Wangshengnan完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
酷波er应助梦红尘采纳,获得10
8秒前
桐桐应助Genius采纳,获得10
9秒前
刘芸若诗完成签到,获得积分10
9秒前
Z_Z完成签到,获得积分10
9秒前
10秒前
哈哈哈哈哈完成签到,获得积分10
10秒前
11秒前
开心超人发布了新的文献求助10
11秒前
风声亦寒发布了新的文献求助10
11秒前
顾矜应助Miriammmmm采纳,获得10
11秒前
CodeCraft应助李晶晶采纳,获得10
12秒前
12秒前
13秒前
LQY完成签到,获得积分20
14秒前
可爱的函函应助lemon采纳,获得20
15秒前
16秒前
小雒雒完成签到,获得积分10
16秒前
香蕉觅云应助陈文文采纳,获得10
16秒前
LQY发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577176
求助须知:如何正确求助?哪些是违规求助? 4662454
关于积分的说明 14741703
捐赠科研通 4603093
什么是DOI,文献DOI怎么找? 2526103
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483