Assessing LLMs in malicious code deobfuscation of real-world malware campaigns

恶意软件 计算机安全 计算机科学 编码(集合论) 互联网隐私 程序设计语言 集合(抽象数据类型)
作者
Constantinos Patsakis,Fran Casino,Nikolaos Lykousas
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:256: 124912-124912 被引量:1
标识
DOI:10.1016/j.eswa.2024.124912
摘要

The integration of large language models (LLMs) into various cybersecurity pipelines has become increasingly prevalent, enabling the automation of numerous manual tasks and often surpassing human performance. Recognising this potential, cybersecurity researchers and practitioners are actively investigating the application of LLMs to process vast volumes of heterogeneous data for anomaly detection, potential bypass identification, attack mitigation, and fraud prevention. Moreover, LLMs' advanced capabilities in generating functional code, interpreting code context, and code summarisation present significant opportunities for reverse engineering and malware deobfuscation. In this work, we comprehensively examine the deobfuscation capabilities of state-of-the-art LLMs. Specifically, we conducted a detailed evaluation of four prominent LLMs using real-world malicious scripts from the notorious Emotet malware campaign. Our findings reveal that while current LLMs are not yet perfectly accurate, they demonstrate substantial potential in efficiently deobfuscating payloads. This study highlights the importance of fine-tuning LLMs for specialised tasks, suggesting that such optimisation could pave the way for future AI-powered threat intelligence pipelines to combat obfuscated malware. Our contributions include a thorough analysis of LLM performance in malware deobfuscation, identifying strengths and limitations, and discussing the potential for integrating LLMs into cybersecurity frameworks for enhanced threat detection and mitigation. Our experiments illustrate that LLMs can automatically and accurately extract the necessary indicators of compromise from a real-world campaign with an accuracy of 69.56% and 88.78% for the URLs and the corresponding domains of the droppers, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa完成签到,获得积分20
刚刚
1秒前
chester_WU应助vivi采纳,获得40
1秒前
2秒前
日月同辉完成签到,获得积分10
2秒前
雨晴完成签到,获得积分10
2秒前
3秒前
DDAIDN完成签到,获得积分10
3秒前
万能图书馆应助klz采纳,获得10
3秒前
xuan完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
天Q完成签到,获得积分10
4秒前
左眼天堂完成签到,获得积分10
4秒前
伏城发布了新的文献求助10
6秒前
曼冬完成签到,获得积分10
6秒前
笨笨的蜡烛完成签到,获得积分10
7秒前
kytlzq完成签到,获得积分10
7秒前
neil完成签到,获得积分10
7秒前
邵初蓝完成签到,获得积分10
7秒前
华仔应助彭凯采纳,获得10
8秒前
9秒前
Joseph_sss完成签到 ,获得积分10
9秒前
玩命的小虾米完成签到,获得积分10
9秒前
无花果应助dan1029采纳,获得10
10秒前
烟花应助dan1029采纳,获得10
10秒前
bkagyin应助dan1029采纳,获得10
10秒前
SciGPT应助dan1029采纳,获得10
10秒前
今后应助dan1029采纳,获得10
10秒前
zx598376321完成签到,获得积分10
10秒前
可爱的函函应助dan1029采纳,获得10
10秒前
爆米花应助dan1029采纳,获得10
10秒前
眯眯眼的鞋垫完成签到,获得积分10
10秒前
完美世界应助dan1029采纳,获得10
10秒前
CodeCraft应助dan1029采纳,获得10
10秒前
xx完成签到,获得积分10
10秒前
a怪完成签到,获得积分10
10秒前
忧伤的觅珍完成签到,获得积分10
11秒前
soga完成签到,获得积分10
13秒前
Haonan完成签到,获得积分10
13秒前
AAA完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613905
求助须知:如何正确求助?哪些是违规求助? 4018314
关于积分的说明 12438103
捐赠科研通 3701040
什么是DOI,文献DOI怎么找? 2041059
邀请新用户注册赠送积分活动 1073751
科研通“疑难数据库(出版商)”最低求助积分说明 957425