Assessing LLMs in malicious code deobfuscation of real-world malware campaigns

恶意软件 计算机安全 计算机科学 编码(集合论) 互联网隐私 程序设计语言 集合(抽象数据类型)
作者
Constantinos Patsakis,Fran Casino,Nikolaos Lykousas
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:256: 124912-124912 被引量:1
标识
DOI:10.1016/j.eswa.2024.124912
摘要

The integration of large language models (LLMs) into various cybersecurity pipelines has become increasingly prevalent, enabling the automation of numerous manual tasks and often surpassing human performance. Recognising this potential, cybersecurity researchers and practitioners are actively investigating the application of LLMs to process vast volumes of heterogeneous data for anomaly detection, potential bypass identification, attack mitigation, and fraud prevention. Moreover, LLMs' advanced capabilities in generating functional code, interpreting code context, and code summarisation present significant opportunities for reverse engineering and malware deobfuscation. In this work, we comprehensively examine the deobfuscation capabilities of state-of-the-art LLMs. Specifically, we conducted a detailed evaluation of four prominent LLMs using real-world malicious scripts from the notorious Emotet malware campaign. Our findings reveal that while current LLMs are not yet perfectly accurate, they demonstrate substantial potential in efficiently deobfuscating payloads. This study highlights the importance of fine-tuning LLMs for specialised tasks, suggesting that such optimisation could pave the way for future AI-powered threat intelligence pipelines to combat obfuscated malware. Our contributions include a thorough analysis of LLM performance in malware deobfuscation, identifying strengths and limitations, and discussing the potential for integrating LLMs into cybersecurity frameworks for enhanced threat detection and mitigation. Our experiments illustrate that LLMs can automatically and accurately extract the necessary indicators of compromise from a real-world campaign with an accuracy of 69.56% and 88.78% for the URLs and the corresponding domains of the droppers, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
看小龙虾打架完成签到 ,获得积分20
刚刚
一个橘子完成签到,获得积分10
1秒前
1秒前
1秒前
云_123发布了新的文献求助10
2秒前
英姑应助大曼采纳,获得10
3秒前
mei完成签到,获得积分10
3秒前
慕青应助淡然的大碗采纳,获得10
4秒前
君寻完成签到 ,获得积分10
4秒前
mouxq发布了新的文献求助10
4秒前
4秒前
坚强亦丝应助司徒无剑采纳,获得10
5秒前
anjun完成签到,获得积分10
5秒前
上官蔚蓝发布了新的文献求助10
5秒前
Kev发布了新的文献求助50
5秒前
迅速的易巧完成签到 ,获得积分10
6秒前
Luke发布了新的文献求助10
6秒前
6秒前
怕孤独的从阳完成签到,获得积分10
7秒前
7秒前
乐乐应助祥子采纳,获得10
8秒前
隐形的书瑶完成签到 ,获得积分10
9秒前
9秒前
潇洒的妙芙完成签到,获得积分10
10秒前
云_123完成签到,获得积分10
10秒前
个性的初南完成签到,获得积分10
10秒前
顾矜应助666666采纳,获得10
10秒前
10秒前
酷波er应助1112采纳,获得10
11秒前
隐形曼青应助感性的俊驰采纳,获得10
11秒前
12秒前
12秒前
北城栀子刂AZ完成签到 ,获得积分10
12秒前
嘟嘟完成签到,获得积分10
12秒前
传奇3应助xl1990采纳,获得10
12秒前
Yoki完成签到,获得积分10
12秒前
xmx完成签到 ,获得积分10
13秒前
成就馒头发布了新的文献求助10
13秒前
13秒前
xfy完成签到,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134659
求助须知:如何正确求助?哪些是违规求助? 2785567
关于积分的说明 7773009
捐赠科研通 2441215
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825