Assessing LLMs in malicious code deobfuscation of real-world malware campaigns

恶意软件 计算机安全 计算机科学 编码(集合论) 互联网隐私 程序设计语言 集合(抽象数据类型)
作者
Constantinos Patsakis,Fran Casino,Nikolaos Lykousas
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:256: 124912-124912 被引量:1
标识
DOI:10.1016/j.eswa.2024.124912
摘要

The integration of large language models (LLMs) into various cybersecurity pipelines has become increasingly prevalent, enabling the automation of numerous manual tasks and often surpassing human performance. Recognising this potential, cybersecurity researchers and practitioners are actively investigating the application of LLMs to process vast volumes of heterogeneous data for anomaly detection, potential bypass identification, attack mitigation, and fraud prevention. Moreover, LLMs' advanced capabilities in generating functional code, interpreting code context, and code summarisation present significant opportunities for reverse engineering and malware deobfuscation. In this work, we comprehensively examine the deobfuscation capabilities of state-of-the-art LLMs. Specifically, we conducted a detailed evaluation of four prominent LLMs using real-world malicious scripts from the notorious Emotet malware campaign. Our findings reveal that while current LLMs are not yet perfectly accurate, they demonstrate substantial potential in efficiently deobfuscating payloads. This study highlights the importance of fine-tuning LLMs for specialised tasks, suggesting that such optimisation could pave the way for future AI-powered threat intelligence pipelines to combat obfuscated malware. Our contributions include a thorough analysis of LLM performance in malware deobfuscation, identifying strengths and limitations, and discussing the potential for integrating LLMs into cybersecurity frameworks for enhanced threat detection and mitigation. Our experiments illustrate that LLMs can automatically and accurately extract the necessary indicators of compromise from a real-world campaign with an accuracy of 69.56% and 88.78% for the URLs and the corresponding domains of the droppers, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的寄容完成签到 ,获得积分10
刚刚
ding应助zhouleiwang采纳,获得10
刚刚
1秒前
1秒前
白应洁发布了新的文献求助30
1秒前
harry2021完成签到,获得积分10
1秒前
3秒前
山山而川发布了新的文献求助10
4秒前
JamesPei应助Gaara0504采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
datiancaihaha发布了新的文献求助10
4秒前
fsznc1完成签到 ,获得积分0
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
lxy94614应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
yznfly应助科研通管家采纳,获得20
5秒前
所所应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
jian应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
jian应助科研通管家采纳,获得10
6秒前
yznfly应助科研通管家采纳,获得50
6秒前
6秒前
maitiandehe完成签到,获得积分10
7秒前
含蓄以云关注了科研通微信公众号
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
香豆素完成签到 ,获得积分10
9秒前
李健应助青年才俊采纳,获得10
9秒前
9秒前
Orange应助青年才俊采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663686
求助须知:如何正确求助?哪些是违规求助? 4851885
关于积分的说明 15105305
捐赠科研通 4821957
什么是DOI,文献DOI怎么找? 2581088
邀请新用户注册赠送积分活动 1535268
关于科研通互助平台的介绍 1493603