Automatic recognition of active landslides by surface deformation and deep learning

山崩 人工智能 鉴定(生物学) 干涉合成孔径雷达 计算机科学 卷积神经网络 感知器 地质学 深度学习 机器学习 人工神经网络 遥感 合成孔径雷达 模式识别(心理学) 地震学 植物 生物
作者
Xianmin Wang,Wenxue Chen,Haifeng Ren,Haixiang Guo
出处
期刊:Progress in Physical Geography [SAGE]
标识
DOI:10.1177/03091333241276523
摘要

Catastrophic landslides are generally evolved from potential active landslides, and early identification of active landslides over an extensive region is vital to effective prevention and control of disastrous landslides in urban areas. Interferometric Synthetic Aperture Radar (InSAR) has immense potential in mapping active landslides. However, artificial interpretation of InSAR measurements and manual recognition of active landslides are very laborious and time-consuming, with a relatively high missing and false alarms. That hinders the application of InSAR technique and the identification of active landslides in wide areas. Automatic recognition of active landslides has always been a great challenge and has been relatively rarely investigated by previous studies. This work establishes comprehensive identification indices of geoenvironmental, disaster-triggering, and surface deformation features. Moreover, it suggests a novel deep learning algorithm of SDeepFM to conduct automatic identification of active landslides across a vast and landslide-serious area of Hualong County. Some new viewpoints are suggested as follows. (1) The identification indices consist of disaster-controlling, disaster-inducing, and active deformation characteristics and are constructed in terms of the cause characteristics of active landslides. Thus, it can effectively decrease the false alarms of active landslide identification. (2) The proposed SDeepFM algorithm features a spatial-perception ability and can adequately extract and fuse the low-level and high-level semantic features. It outperforms the classification and regression tree (CART), multi-layer perceptron (MLP), convolutional neural network (CNN), and deep neural network (DNN) algorithms. The test accuracy attains 0.91, 99.73%, 90.21%, 0.92, 0.96, and 0.91 in F1-score, Accuracy, Precision, Recall, AUC, and Kappa, respectively. (3) A total of 164 active landslides are exactly recognized, and 39 active landslides are newly identified in this work. (4) In Hualong County, the characteristics of slope deformation, spatial context, lithology, tectonic movement, human activity, and topography play important roles in active landslide identification. River distribution and rainfall also contribute to active landslide recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高yq发布了新的文献求助20
刚刚
苦逼发布了新的文献求助10
1秒前
2秒前
2秒前
李昕123发布了新的文献求助10
2秒前
简洁应助贺英采纳,获得20
3秒前
李勒给李勒的求助进行了留言
3秒前
4秒前
5秒前
5秒前
bkagyin应助可乐采纳,获得10
5秒前
5秒前
Alicia完成签到 ,获得积分10
6秒前
琪3043发布了新的文献求助10
6秒前
糊涂的勒完成签到,获得积分10
6秒前
6秒前
golfgold完成签到,获得积分10
7秒前
心悦臣服发布了新的文献求助10
7秒前
阴天快乐完成签到,获得积分10
7秒前
小徐发布了新的文献求助10
8秒前
squirrelcone完成签到 ,获得积分10
8秒前
yunyii发布了新的文献求助10
8秒前
白衣修身发布了新的文献求助10
9秒前
落后的小蕊完成签到,获得积分10
9秒前
10秒前
英俊的铭应助Aaernan采纳,获得10
10秒前
科研通AI2S应助淡淡绮琴采纳,获得10
12秒前
nsk完成签到,获得积分20
13秒前
13秒前
络桵发布了新的文献求助10
13秒前
嘟嘟雯完成签到 ,获得积分10
13秒前
小二郎应助kk采纳,获得10
14秒前
14秒前
南极冰完成签到 ,获得积分10
15秒前
鲤鱼青槐完成签到,获得积分10
16秒前
小徐完成签到,获得积分10
18秒前
诚心安露发布了新的文献求助30
19秒前
19秒前
心悦臣服完成签到,获得积分10
20秒前
20秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122590
求助须知:如何正确求助?哪些是违规求助? 2773067
关于积分的说明 7716206
捐赠科研通 2428547
什么是DOI,文献DOI怎么找? 1289868
科研通“疑难数据库(出版商)”最低求助积分说明 621598
版权声明 600185