已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic recognition of active landslides by surface deformation and deep learning

山崩 人工智能 鉴定(生物学) 干涉合成孔径雷达 计算机科学 卷积神经网络 感知器 地质学 深度学习 机器学习 人工神经网络 遥感 合成孔径雷达 模式识别(心理学) 地震学 植物 生物
作者
Xianmin Wang,Wenxue Chen,Haifeng Ren,Haixiang Guo
出处
期刊:Progress in Physical Geography [SAGE Publishing]
卷期号:48 (5-6): 671-697
标识
DOI:10.1177/03091333241276523
摘要

Catastrophic landslides are generally evolved from potential active landslides, and early identification of active landslides over an extensive region is vital to effective prevention and control of disastrous landslides in urban areas. Interferometric Synthetic Aperture Radar (InSAR) has immense potential in mapping active landslides. However, artificial interpretation of InSAR measurements and manual recognition of active landslides are very laborious and time-consuming, with a relatively high missing and false alarms. That hinders the application of InSAR technique and the identification of active landslides in wide areas. Automatic recognition of active landslides has always been a great challenge and has been relatively rarely investigated by previous studies. This work establishes comprehensive identification indices of geoenvironmental, disaster-triggering, and surface deformation features. Moreover, it suggests a novel deep learning algorithm of SDeepFM to conduct automatic identification of active landslides across a vast and landslide-serious area of Hualong County. Some new viewpoints are suggested as follows. (1) The identification indices consist of disaster-controlling, disaster-inducing, and active deformation characteristics and are constructed in terms of the cause characteristics of active landslides. Thus, it can effectively decrease the false alarms of active landslide identification. (2) The proposed SDeepFM algorithm features a spatial-perception ability and can adequately extract and fuse the low-level and high-level semantic features. It outperforms the classification and regression tree (CART), multi-layer perceptron (MLP), convolutional neural network (CNN), and deep neural network (DNN) algorithms. The test accuracy attains 0.91, 99.73%, 90.21%, 0.92, 0.96, and 0.91 in F1-score, Accuracy, Precision, Recall, AUC, and Kappa, respectively. (3) A total of 164 active landslides are exactly recognized, and 39 active landslides are newly identified in this work. (4) In Hualong County, the characteristics of slope deformation, spatial context, lithology, tectonic movement, human activity, and topography play important roles in active landslide identification. River distribution and rainfall also contribute to active landslide recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
平淡的雁开完成签到 ,获得积分10
2秒前
raziel完成签到,获得积分10
2秒前
2秒前
3秒前
芋芋发布了新的文献求助10
4秒前
哭泣猫咪发布了新的文献求助10
6秒前
旋律发布了新的文献求助10
7秒前
8秒前
raziel发布了新的文献求助10
8秒前
9秒前
iNk应助ruanyh采纳,获得20
12秒前
zhixin发布了新的文献求助10
12秒前
哭泣猫咪完成签到,获得积分10
13秒前
深情安青应助小白采纳,获得10
14秒前
吴未完成签到 ,获得积分10
17秒前
芋芋完成签到,获得积分10
19秒前
20秒前
25秒前
执着的冬瓜完成签到 ,获得积分10
30秒前
ll应助JZY采纳,获得10
30秒前
小白发布了新的文献求助10
30秒前
30秒前
30秒前
31秒前
牛奶秋刀鱼完成签到 ,获得积分10
31秒前
ZoeyD完成签到 ,获得积分10
33秒前
35秒前
fh完成签到,获得积分10
36秒前
涂山容儿完成签到,获得积分10
36秒前
jasmime完成签到,获得积分10
41秒前
涂山容儿发布了新的文献求助10
41秒前
星辰大海应助贺兰采纳,获得10
42秒前
背后的傥完成签到,获得积分10
48秒前
zxx完成签到 ,获得积分10
48秒前
53秒前
54秒前
55秒前
55秒前
55秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968110
求助须知:如何正确求助?哪些是违规求助? 3513080
关于积分的说明 11166497
捐赠科研通 3248293
什么是DOI,文献DOI怎么找? 1794178
邀请新用户注册赠送积分活动 874903
科研通“疑难数据库(出版商)”最低求助积分说明 804629