亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic recognition of active landslides by surface deformation and deep learning

山崩 人工智能 鉴定(生物学) 干涉合成孔径雷达 计算机科学 卷积神经网络 感知器 地质学 深度学习 机器学习 人工神经网络 遥感 合成孔径雷达 模式识别(心理学) 地震学 植物 生物
作者
Xianmin Wang,Wenxue Chen,Haifeng Ren,Haixiang Guo
出处
期刊:Progress in Physical Geography [SAGE Publishing]
卷期号:48 (5-6): 671-697
标识
DOI:10.1177/03091333241276523
摘要

Catastrophic landslides are generally evolved from potential active landslides, and early identification of active landslides over an extensive region is vital to effective prevention and control of disastrous landslides in urban areas. Interferometric Synthetic Aperture Radar (InSAR) has immense potential in mapping active landslides. However, artificial interpretation of InSAR measurements and manual recognition of active landslides are very laborious and time-consuming, with a relatively high missing and false alarms. That hinders the application of InSAR technique and the identification of active landslides in wide areas. Automatic recognition of active landslides has always been a great challenge and has been relatively rarely investigated by previous studies. This work establishes comprehensive identification indices of geoenvironmental, disaster-triggering, and surface deformation features. Moreover, it suggests a novel deep learning algorithm of SDeepFM to conduct automatic identification of active landslides across a vast and landslide-serious area of Hualong County. Some new viewpoints are suggested as follows. (1) The identification indices consist of disaster-controlling, disaster-inducing, and active deformation characteristics and are constructed in terms of the cause characteristics of active landslides. Thus, it can effectively decrease the false alarms of active landslide identification. (2) The proposed SDeepFM algorithm features a spatial-perception ability and can adequately extract and fuse the low-level and high-level semantic features. It outperforms the classification and regression tree (CART), multi-layer perceptron (MLP), convolutional neural network (CNN), and deep neural network (DNN) algorithms. The test accuracy attains 0.91, 99.73%, 90.21%, 0.92, 0.96, and 0.91 in F1-score, Accuracy, Precision, Recall, AUC, and Kappa, respectively. (3) A total of 164 active landslides are exactly recognized, and 39 active landslides are newly identified in this work. (4) In Hualong County, the characteristics of slope deformation, spatial context, lithology, tectonic movement, human activity, and topography play important roles in active landslide identification. River distribution and rainfall also contribute to active landslide recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
念0完成签到 ,获得积分10
10秒前
哈宁完成签到,获得积分10
13秒前
21秒前
26秒前
sissie发布了新的文献求助10
32秒前
隐形曼青应助ceeray23采纳,获得20
33秒前
杜鑫鹏发布了新的文献求助10
58秒前
Zoe完成签到 ,获得积分10
59秒前
taku完成签到 ,获得积分10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
mama完成签到 ,获得积分10
1分钟前
Zoye完成签到 ,获得积分10
1分钟前
画晴完成签到,获得积分10
2分钟前
2分钟前
画晴发布了新的文献求助30
2分钟前
深情安青应助谢琳采纳,获得10
2分钟前
在水一方应助sherrydj采纳,获得10
2分钟前
2分钟前
wyx发布了新的文献求助10
2分钟前
2分钟前
英姑应助整齐千柳采纳,获得10
2分钟前
3分钟前
整齐千柳发布了新的文献求助10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
jjqqqj完成签到 ,获得积分10
3分钟前
najd完成签到 ,获得积分10
3分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
CodeCraft应助Kiri_0661采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356965
求助须知:如何正确求助?哪些是违规求助? 4488587
关于积分的说明 13972349
捐赠科研通 4389621
什么是DOI,文献DOI怎么找? 2411667
邀请新用户注册赠送积分活动 1404221
关于科研通互助平台的介绍 1378341