A Computer Vision Algorithm to Predict Superior Mesenteric Artery Margin Status for Patients with Pancreatic Ductal Adenocarcinoma

医学 形状记忆合金* 肠系膜上动脉 放射科 胰腺导管腺癌 分割 边距(机器学习) 算法 人工智能 胰腺癌 内科学 机器学习 癌症 计算机科学
作者
Jane Wang,Amir Ashraf‐Ganjouei,Fernanda Romero‐Hernández,Laleh Foroutani,Dorukhan Bahceci,Aletta Deranteriassian,Megan Casey,Po-Yi Li,Sina Houshmand,Spencer C. Behr,Neema Jamshidi,Sharmila Majumdar,Timothy R. Donahue,G. Kim,Zhen Jane Wang,Lucas W. Thornblade,Mohamed A. Adam,Adnan Alseidi
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
标识
DOI:10.1097/sla.0000000000006506
摘要

Objective: To evaluate the feasibility of developing a computer vision algorithm that uses preoperative computed tomography (CT) scans to predict superior mesenteric artery (SMA) margin status in patients undergoing Whipple for pancreatic ductal adenocarcinoma (PDAC), and to compare algorithm performance to that of expert abdominal radiologists and surgical oncologists. Summary Background Data: Complete surgical resection is the only chance to achieve a cure for PDAC; however, current modalities to predict vascular invasion have limited accuracy. Methods: Adult patients with PDAC who underwent Whipple and had preoperative contrast-enhanced CT scans were included (2010-2022). The SMA was manually annotated on the CT scans, and we trained a U-Net algorithm for SMA segmentation and a ResNet50 algorithm for predicting SMA margin status. Radiologists and surgeons reviewed the scans in a blinded fashion. SMA margin status per pathology reports was the reference. Results: Two hundred patients were included. Forty patients (20%) had a positive SMA margin. For the segmentation task, the U-Net model achieved a Dice Similarity Coefficient of 0.90. For the classification task, all readers demonstrated limited sensitivity, although the algorithm had the highest sensitivity at 0.43 (versus 0.23 and 0.36 for the radiologists and surgeons, respectively). Specificity was universally excellent, with the radiologist and algorithm demonstrating the highest specificity at 0.94. Finally, the accuracy of the algorithm was 0.85 versus 0.80 and 0.76 for the radiologists and surgeons, respectively. Conclusions: We demonstrated the feasibility of developing a computer vision algorithm to predict SMA margin status using preoperative CT scans, highlighting its potential to augment the prediction of vascular involvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助sam1514采纳,获得10
刚刚
酷波er应助刘智山采纳,获得10
1秒前
1秒前
Jacklzu完成签到,获得积分10
1秒前
wrwywzx完成签到,获得积分10
2秒前
小叶大王完成签到,获得积分20
2秒前
3秒前
3秒前
4秒前
Joleneli100完成签到,获得积分10
4秒前
bao驳回了无花果应助
4秒前
4秒前
星辰大海应助渊_采纳,获得10
4秒前
思绪完成签到 ,获得积分10
5秒前
YEHEI完成签到 ,获得积分10
5秒前
李健应助Na2CO3采纳,获得10
5秒前
vesta完成签到,获得积分10
5秒前
5秒前
6秒前
GG发布了新的文献求助10
6秒前
OKOK发布了新的文献求助10
6秒前
汉堡一号完成签到,获得积分10
6秒前
6秒前
6秒前
Patrick完成签到,获得积分20
6秒前
6秒前
026发布了新的文献求助10
6秒前
richestchen完成签到,获得积分10
6秒前
7秒前
LSY发布了新的文献求助10
7秒前
junjie发布了新的文献求助10
7秒前
与秋逐鹿发布了新的文献求助10
8秒前
科研通AI6应助邓谷云采纳,获得10
8秒前
8秒前
风云完成签到,获得积分10
8秒前
所所应助harden采纳,获得10
8秒前
研友_VZG7GZ应助禾几采纳,获得10
8秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071804
求助须知:如何正确求助?哪些是违规求助? 4292378
关于积分的说明 13374385
捐赠科研通 4113281
什么是DOI,文献DOI怎么找? 2252316
邀请新用户注册赠送积分活动 1257279
关于科研通互助平台的介绍 1190064