已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Computer Vision Algorithm to Predict Superior Mesenteric Artery Margin Status for Patients with Pancreatic Ductal Adenocarcinoma

医学 形状记忆合金* 肠系膜上动脉 放射科 胰腺导管腺癌 分割 边距(机器学习) 算法 人工智能 胰腺癌 内科学 机器学习 癌症 计算机科学
作者
Jane Wang,Amir Ashraf‐Ganjouei,Fernanda Romero‐Hernández,Laleh Foroutani,Dorukhan Bahceci,Aletta Deranteriassian,Megan Casey,Po-Yi Li,Sina Houshmand,Spencer C. Behr,Neema Jamshidi,Sharmila Majumdar,Timothy R. Donahue,G. Kim,Zhen Jane Wang,Lucas W. Thornblade,Mohamed A. Adam,Adnan Alseidi
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/sla.0000000000006506
摘要

Objective: To evaluate the feasibility of developing a computer vision algorithm that uses preoperative computed tomography (CT) scans to predict superior mesenteric artery (SMA) margin status in patients undergoing Whipple for pancreatic ductal adenocarcinoma (PDAC), and to compare algorithm performance to that of expert abdominal radiologists and surgical oncologists. Summary Background Data: Complete surgical resection is the only chance to achieve a cure for PDAC; however, current modalities to predict vascular invasion have limited accuracy. Methods: Adult patients with PDAC who underwent Whipple and had preoperative contrast-enhanced CT scans were included (2010-2022). The SMA was manually annotated on the CT scans, and we trained a U-Net algorithm for SMA segmentation and a ResNet50 algorithm for predicting SMA margin status. Radiologists and surgeons reviewed the scans in a blinded fashion. SMA margin status per pathology reports was the reference. Results: Two hundred patients were included. Forty patients (20%) had a positive SMA margin. For the segmentation task, the U-Net model achieved a Dice Similarity Coefficient of 0.90. For the classification task, all readers demonstrated limited sensitivity, although the algorithm had the highest sensitivity at 0.43 (versus 0.23 and 0.36 for the radiologists and surgeons, respectively). Specificity was universally excellent, with the radiologist and algorithm demonstrating the highest specificity at 0.94. Finally, the accuracy of the algorithm was 0.85 versus 0.80 and 0.76 for the radiologists and surgeons, respectively. Conclusions: We demonstrated the feasibility of developing a computer vision algorithm to predict SMA margin status using preoperative CT scans, highlighting its potential to augment the prediction of vascular involvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助燕儿采纳,获得10
1秒前
万能图书馆应助杨冠渊采纳,获得10
5秒前
Zhang完成签到 ,获得积分10
6秒前
香蕉觅云应助一颗卷心菜采纳,获得10
6秒前
6秒前
香蕉觅云应助111采纳,获得10
7秒前
科研通AI6应助汉堡肉采纳,获得10
8秒前
9秒前
9秒前
善学以致用应助花盆大王采纳,获得30
9秒前
阿伟1999完成签到,获得积分10
10秒前
10秒前
快飞飞发布了新的文献求助10
10秒前
10秒前
Augustines完成签到,获得积分10
11秒前
独特的师发布了新的文献求助10
14秒前
14秒前
星辰大海应助Bailey采纳,获得10
14秒前
15秒前
lisa完成签到,获得积分10
15秒前
15秒前
ruer完成签到,获得积分10
15秒前
16秒前
神勇果汁发布了新的文献求助30
17秒前
万能图书馆应助缥缈擎汉采纳,获得10
18秒前
19秒前
Chen发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
充电宝应助毕业生采纳,获得10
20秒前
WangLu2025完成签到 ,获得积分10
20秒前
张雷发布了新的文献求助10
21秒前
Zhang发布了新的文献求助10
22秒前
23秒前
26秒前
安静含卉完成签到,获得积分20
27秒前
老芋头完成签到,获得积分10
27秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469690
求助须知:如何正确求助?哪些是违规求助? 4572675
关于积分的说明 14336868
捐赠科研通 4499634
什么是DOI,文献DOI怎么找? 2465126
邀请新用户注册赠送积分活动 1453693
关于科研通互助平台的介绍 1428209