A Computer Vision Algorithm to Predict Superior Mesenteric Artery Margin Status for Patients with Pancreatic Ductal Adenocarcinoma

医学 形状记忆合金* 肠系膜上动脉 放射科 胰腺导管腺癌 分割 边距(机器学习) 算法 人工智能 胰腺癌 内科学 机器学习 癌症 计算机科学
作者
Jane Wang,Amir Ashraf‐Ganjouei,Fernanda Romero‐Hernández,Laleh Foroutani,Dorukhan Bahceci,Aletta Deranteriassian,Megan Casey,Po-Yi Li,Sina Houshmand,Spencer C. Behr,Neema Jamshidi,Sharmila Majumdar,Timothy R. Donahue,G. Kim,Zhen Jane Wang,Lucas W. Thornblade,Mohamed A. Adam,Adnan Alseidi
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/sla.0000000000006506
摘要

Objective: To evaluate the feasibility of developing a computer vision algorithm that uses preoperative computed tomography (CT) scans to predict superior mesenteric artery (SMA) margin status in patients undergoing Whipple for pancreatic ductal adenocarcinoma (PDAC), and to compare algorithm performance to that of expert abdominal radiologists and surgical oncologists. Summary Background Data: Complete surgical resection is the only chance to achieve a cure for PDAC; however, current modalities to predict vascular invasion have limited accuracy. Methods: Adult patients with PDAC who underwent Whipple and had preoperative contrast-enhanced CT scans were included (2010-2022). The SMA was manually annotated on the CT scans, and we trained a U-Net algorithm for SMA segmentation and a ResNet50 algorithm for predicting SMA margin status. Radiologists and surgeons reviewed the scans in a blinded fashion. SMA margin status per pathology reports was the reference. Results: Two hundred patients were included. Forty patients (20%) had a positive SMA margin. For the segmentation task, the U-Net model achieved a Dice Similarity Coefficient of 0.90. For the classification task, all readers demonstrated limited sensitivity, although the algorithm had the highest sensitivity at 0.43 (versus 0.23 and 0.36 for the radiologists and surgeons, respectively). Specificity was universally excellent, with the radiologist and algorithm demonstrating the highest specificity at 0.94. Finally, the accuracy of the algorithm was 0.85 versus 0.80 and 0.76 for the radiologists and surgeons, respectively. Conclusions: We demonstrated the feasibility of developing a computer vision algorithm to predict SMA margin status using preoperative CT scans, highlighting its potential to augment the prediction of vascular involvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫尔儿发布了新的文献求助10
刚刚
年鱼精发布了新的文献求助10
1秒前
共享精神应助栗子采纳,获得10
1秒前
思川完成签到,获得积分10
2秒前
2秒前
2秒前
CipherSage应助小火孩采纳,获得10
4秒前
潇洒南晴关注了科研通微信公众号
4秒前
隐形曼青应助刚刚一会儿采纳,获得10
4秒前
栗子发布了新的文献求助10
4秒前
4秒前
123321发布了新的文献求助10
5秒前
5秒前
英俊的铭应助echooo采纳,获得10
6秒前
6秒前
酷波er应助高贵春天采纳,获得10
6秒前
ding完成签到,获得积分10
6秒前
俏皮含双完成签到,获得积分10
7秒前
cmmmmmm发布了新的文献求助10
8秒前
8秒前
Duckseid发布了新的文献求助10
9秒前
花花兔完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
zxj完成签到,获得积分10
10秒前
10秒前
盐爆花生发布了新的文献求助10
10秒前
高铁完成签到,获得积分10
11秒前
11秒前
11秒前
彭于晏应助猫尔儿采纳,获得10
12秒前
泡泡老爷车完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
大模型应助FlipFlops采纳,获得10
13秒前
13秒前
猪猪侠应助yuqinghui98采纳,获得10
13秒前
黄太白完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667995
求助须知:如何正确求助?哪些是违规求助? 4888874
关于积分的说明 15122780
捐赠科研通 4826840
什么是DOI,文献DOI怎么找? 2584376
邀请新用户注册赠送积分活动 1538211
关于科研通互助平台的介绍 1496526