A Computer Vision Algorithm to Predict Superior Mesenteric Artery Margin Status for Patients with Pancreatic Ductal Adenocarcinoma

医学 形状记忆合金* 肠系膜上动脉 放射科 胰腺导管腺癌 分割 边距(机器学习) 算法 人工智能 胰腺癌 内科学 机器学习 癌症 计算机科学
作者
Jane Wang,Amir Ashraf‐Ganjouei,Fernanda Romero‐Hernández,Laleh Foroutani,Dorukhan Bahceci,Aletta Deranteriassian,Megan Casey,Po-Yi Li,Sina Houshmand,Spencer C. Behr,Neema Jamshidi,Sharmila Majumdar,Timothy R. Donahue,G. Kim,Zhen Jane Wang,Lucas W. Thornblade,Mohamed A. Adam,Adnan Alseidi
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/sla.0000000000006506
摘要

Objective: To evaluate the feasibility of developing a computer vision algorithm that uses preoperative computed tomography (CT) scans to predict superior mesenteric artery (SMA) margin status in patients undergoing Whipple for pancreatic ductal adenocarcinoma (PDAC), and to compare algorithm performance to that of expert abdominal radiologists and surgical oncologists. Summary Background Data: Complete surgical resection is the only chance to achieve a cure for PDAC; however, current modalities to predict vascular invasion have limited accuracy. Methods: Adult patients with PDAC who underwent Whipple and had preoperative contrast-enhanced CT scans were included (2010-2022). The SMA was manually annotated on the CT scans, and we trained a U-Net algorithm for SMA segmentation and a ResNet50 algorithm for predicting SMA margin status. Radiologists and surgeons reviewed the scans in a blinded fashion. SMA margin status per pathology reports was the reference. Results: Two hundred patients were included. Forty patients (20%) had a positive SMA margin. For the segmentation task, the U-Net model achieved a Dice Similarity Coefficient of 0.90. For the classification task, all readers demonstrated limited sensitivity, although the algorithm had the highest sensitivity at 0.43 (versus 0.23 and 0.36 for the radiologists and surgeons, respectively). Specificity was universally excellent, with the radiologist and algorithm demonstrating the highest specificity at 0.94. Finally, the accuracy of the algorithm was 0.85 versus 0.80 and 0.76 for the radiologists and surgeons, respectively. Conclusions: We demonstrated the feasibility of developing a computer vision algorithm to predict SMA margin status using preoperative CT scans, highlighting its potential to augment the prediction of vascular involvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胜胜糖完成签到 ,获得积分10
4秒前
WW发布了新的文献求助10
4秒前
是小小李哇完成签到 ,获得积分10
4秒前
初夏完成签到 ,获得积分10
8秒前
黄花完成签到 ,获得积分10
11秒前
15秒前
桐桐应助WW采纳,获得30
15秒前
Ashley完成签到,获得积分10
16秒前
18秒前
JJ发布了新的文献求助10
19秒前
胜天半子完成签到 ,获得积分10
21秒前
星空完成签到 ,获得积分10
22秒前
迷人的沛山完成签到 ,获得积分10
22秒前
FUNG发布了新的文献求助10
23秒前
minino完成签到 ,获得积分10
24秒前
29秒前
橘子海完成签到 ,获得积分10
33秒前
失眠的香蕉完成签到 ,获得积分10
45秒前
科研通AI2S应助FUNG采纳,获得10
47秒前
哈哈哈完成签到 ,获得积分10
47秒前
学术完成签到 ,获得积分10
48秒前
richard1357完成签到 ,获得积分10
48秒前
彭于晏应助JJ采纳,获得10
50秒前
chenbin完成签到,获得积分10
1分钟前
1分钟前
Chasing完成签到 ,获得积分10
1分钟前
陈米花完成签到,获得积分10
1分钟前
yyjl31完成签到,获得积分10
1分钟前
Simon_chat完成签到,获得积分10
1分钟前
Hank完成签到 ,获得积分10
1分钟前
General完成签到 ,获得积分10
1分钟前
吐司炸弹完成签到,获得积分10
1分钟前
mayfly完成签到,获得积分10
1分钟前
LT完成签到 ,获得积分10
1分钟前
1分钟前
玉鱼儿完成签到 ,获得积分10
1分钟前
neal仰望应助文件撤销了驳回
1分钟前
文耀海发布了新的文献求助10
1分钟前
崩溃完成签到,获得积分10
1分钟前
睡觉王完成签到 ,获得积分10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793684
关于积分的说明 7807147
捐赠科研通 2450016
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350