基因敲除
硒缺乏症
炎症
节点2
硒蛋白
GPX3型
生物
竞争性内源性RNA
细胞生物学
癌症研究
下调和上调
氧化应激
免疫学
谷胱甘肽过氧化物酶
长非编码RNA
免疫系统
基因
内分泌学
生物化学
超氧化物歧化酶
先天免疫系统
作者
Yiming Zhang,Chunyu Wei,Jiayi Ding,Jia‐Hong Chu,Bo Huang,Guangliang Shi,Shu Li
摘要
Abstract Deficiency of selenium (Se), an important trace element, causes diarrhea and even death in broilers, thereby affecting the economic development of poultry production. Adding Se is one way to relieve this situation; however, it has not fundamentally resolved intestinal inflammation. Therefore, we sought a new strategy to alleviate intestinal inflammation by studying the specific mechanisms of Se deficiency. By replicating the Se-deficient broiler model and establishing a chicken small intestinal epithelial cell (CSIEC) model, we determined that Se deficiency caused intestinal oxidative stress and necroptotic intestinal inflammation in broilers by decreasing glutathione peroxidase (GPX) 3 expression. Simultaneously, the expression of long non-coding RNA (lncRNA)WSF27 decreased and that of miR-1696 increased in Se-deficient intestines. Recently discovered competing endogenous RNAs (ceRNAs) form novel regulatory networks, which were found that selenoproteins involved in ceRNA regulation. However, the mechanism of action of the non-coding RNA/GPX3 axis in Se-deficient broiler intestinal inflammation remains unclear. This study aimed to explore the mechanism through which Se deficiency regulates intestinal inflammation in broilers through the lncRNAWSF27/miR-1696/GPX3 axis. Our previous studies showed that lncRNAWSF27, miR-1696, and GPX3 have ceRNA-regulatory relationships. To further determine the role of the lncRNAWSF27/miR-1696/GPX3 axis in Se-deficient broiler intestinal inflammation, CSIEC models with GPX3 knockdown/overexpression, lncRNAWSF27 knockdown, or miR-1696 knockdown/overexpression were established to simulate intestinal injury. GPX3 knockdown, as well as lncRNAWSF27 and miR-1696 overexpression, aggravated cell damage. On the contrary, it can alleviate this situation. Our results reveal that mechanism of lncRNAWSF27/miR-1696/GPX3 regulated Se-deficient broiler intestinal inflammation. This conclusion enriches our understanding of the mechanism of intestinal injury caused by Se deficiency, and contributes to the diagnosis of Se-deficient intestinal inflammation and relevant drug development.
科研通智能强力驱动
Strongly Powered by AbleSci AI