Small-sample health indicator construction of rolling bearings with wavelet scattering network: An empirical study from frequency perspective

透视图(图形) 小波 样品(材料) 散射 声学 结构工程 计算机科学 工程类 人工智能 光学 物理 热力学
作者
Li Wang,Wentao Mao,Yanna Zhang,Panpan Zeng,Zhidan Zhong
标识
DOI:10.1177/1748006x241272827
摘要

As a critical issue of diagnostics and health management (PHM), health indicator (HI) construction aims to describe the degradation process of bearings and can provide essential support of domain knowledge for early fault detection and remaining useful life prediction. In recent years, various deep neural networks, with end-to-end modeling capability, have been successfully applied to the HI construction for rolling bearings. In small-sample environment, however, the degradation features would not be extracted well by deep learning techniques, which may raise insufficient tendency and monotonicity characteristics in the obtained HI sequence. To address this concern, this paper proposes a HI construction method based on wavelet scattering network (WSN) and makes an empirical evaluation from frequency perspective. First, degradation features in different frequency bands are extracted from vibration signals by using WSN to expand the feature space with different scales and orientations. Second, the frequency band with the optimal scale and orientation parameters is selected by calculating the dynamic time wrapping (DTW) distance between the feature sequences of each frequency band and the root mean square (RMS) sequence. With the feature subset from the determined frequency band, the HI sequence can be built by means of principal component analysis (PCA). Experimental results on the IEEE PHM Challenge 2012 bearing dataset show that the proposed method can work well with only a small amount of bearing whole-life data in obtaining the HI sequences with high monotonicity and correlation characteristics. More interestingly, the critical frequency band whose information supports decisively the HI construction can be clarified, raising interpretability in a frequency sense and enhancing the credibility of the obtained HI sequence as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
假装学霸完成签到,获得积分10
刚刚
刚刚
1秒前
可爱的函函应助温暖幻桃采纳,获得10
1秒前
1秒前
小马甲应助能干可兰采纳,获得10
1秒前
宇文兰畅完成签到,获得积分20
1秒前
稳重的缘分完成签到,获得积分20
1秒前
daniel发布了新的文献求助10
2秒前
丘比特应助DE2022采纳,获得10
2秒前
3秒前
wanci应助一坤采纳,获得10
3秒前
huang完成签到,获得积分10
3秒前
SciGPT应助独特的赛君采纳,获得10
3秒前
爱吃泡芙完成签到,获得积分10
3秒前
Allonz完成签到,获得积分10
4秒前
六一啊六一完成签到 ,获得积分10
4秒前
515完成签到,获得积分20
5秒前
5秒前
Pluto完成签到,获得积分10
5秒前
yu完成签到,获得积分20
6秒前
耐心齐完成签到,获得积分10
6秒前
欢快的芹菜完成签到,获得积分10
6秒前
wangfu发布了新的文献求助10
7秒前
xiaozhuzhu完成签到,获得积分10
7秒前
木菁发布了新的文献求助10
7秒前
7秒前
菠萝包完成签到 ,获得积分10
8秒前
515发布了新的文献求助10
8秒前
8秒前
上官若男应助zzzhu采纳,获得10
8秒前
0033发布了新的文献求助10
8秒前
UGO发布了新的文献求助10
9秒前
阿玖完成签到,获得积分10
9秒前
9秒前
Lei发布了新的文献求助30
9秒前
思源应助火星上的闭月采纳,获得10
10秒前
Pengzhuhuai完成签到,获得积分10
10秒前
aaefv完成签到,获得积分10
10秒前
11秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180554
求助须知:如何正确求助?哪些是违规求助? 2830814
关于积分的说明 7981328
捐赠科研通 2492536
什么是DOI,文献DOI怎么找? 1329631
科研通“疑难数据库(出版商)”最低求助积分说明 635745
版权声明 602954