NTK-Guided Few-Shot Class Incremental Learning

计算机科学 班级(哲学) 人工智能 弹丸 一次性 计算机视觉 化学 工程类 机械工程 有机化学
作者
Jingren Liu,Zhong Ji,Yanwei Pang,Yunlong Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 6029-6044
标识
DOI:10.1109/tip.2024.3478854
摘要

The proliferation of Few-Shot Class Incremental Learning (FSCIL) methodologies has highlighted the critical challenge of maintaining robust anti-amnesia capabilities in FSCIL learners. In this paper, we present a novel conceptualization of anti-amnesia in terms of mathematical generalization, leveraging the Neural Tangent Kernel (NTK) perspective. Our method focuses on two key aspects: ensuring optimal NTK convergence and minimizing NTK-related generalization loss, which serve as the theoretical foundation for cross-task generalization. To achieve global NTK convergence, we introduce a principled meta-learning mechanism that guides optimization within an expanded network architecture. Concurrently, to reduce the NTK-related generalization loss, we systematically optimize its constituent factors. Specifically, we initiate self-supervised pre-training on the base session to enhance NTK-related generalization potential. These self-supervised weights are then carefully refined through curricular alignment, followed by the application of dual NTK regularization tailored specifically for both convolutional and linear layers. Through the combined effects of these measures, our network acquires robust NTK properties, ensuring optimal convergence and stability of the NTK matrix and minimizing the NTK-related generalization loss, significantly enhancing its theoretical generalization. On popular FSCIL benchmark datasets, our NTK-FSCIL surpasses contemporary state-of-the-art approaches, elevating end-session accuracy by 2.9% to 9.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芋圆不圆完成签到,获得积分10
1秒前
招财不肥发布了新的文献求助10
2秒前
zxc111发布了新的文献求助10
2秒前
魔幻的从梦完成签到,获得积分10
2秒前
3秒前
Xiaoxiao应助sunyexuan采纳,获得10
4秒前
5秒前
6秒前
淼淼之锋完成签到 ,获得积分10
6秒前
赢赢完成签到 ,获得积分10
6秒前
7秒前
8秒前
科目三应助落落采纳,获得10
10秒前
67发布了新的文献求助10
10秒前
10秒前
溜溜完成签到,获得积分10
10秒前
xixi完成签到 ,获得积分10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
撒上咖啡应助科研通管家采纳,获得10
11秒前
RC_Wang应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
琪琪扬扬发布了新的文献求助10
11秒前
sutharsons应助科研通管家采纳,获得30
11秒前
orixero应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
清爽老九应助科研通管家采纳,获得20
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
hui发布了新的文献求助30
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
13秒前
迟大猫应助若狂采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808