CLR2G: Cross modal Contrastive Learning on Radiology Report Generation

计算机科学 情态动词 人工智能 自然语言处理 材料科学 高分子化学
作者
Hongchen Xue,Qingzhi Ma,Guanfeng Liu,Jianfeng Qu,Yuanjun Liu,An Liu
标识
DOI:10.1145/3627673.3679668
摘要

The automatic generation of radiological imaging reports aims to produce accurate and coherent clinical descriptions based on X-ray images. This facilitates clinicians in completing the arduous task of report writing and advances clinical automation. The primary challenge in radiological imaging report generation lies in accurately capturing and describing abnormal regions in the images under data bias conditions, resulting in the generation of lengthy texts containing image details. Existing methods mostly rely on prior knowledge such as medical knowledge graphs, corpora, and image databases to assist models in generating more precise textual descriptions. However, these methods still struggle to identify rare anomalies in the images. To address this issue, we propose a two-stage training model, named CLR2G, based on cross-modal contrastive learning. This model delegates the task of capturing anomalies, particularly those challenging for the generative model trained with cross-entropy loss under data bias conditions, to a specialized abnormality capture component. Specifically, we employ a semantic matching loss function to train additional abnormal image and text encoders through cross-modal contrastive learning, facilitating the capture of 13 common anomalies. We utilize the anomalous image features, text features and their confidence probabilities as a posteriori knowledge to help the model generate accurate image reports. Experimental results demonstrate the state-of-the-art performance of our method on two widely used public datasets, IU-Xray and MIMIC-CXR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
睽阔完成签到,获得积分10
4秒前
4秒前
5秒前
幸福的星星完成签到,获得积分10
8秒前
Varonica发布了新的文献求助50
9秒前
高兴小熊猫完成签到,获得积分10
10秒前
10秒前
11秒前
orange完成签到,获得积分10
11秒前
英姑应助多多采纳,获得10
11秒前
13秒前
15秒前
英勇的如音完成签到,获得积分20
16秒前
16秒前
深情安青应助大橙子采纳,获得10
16秒前
星愿发布了新的文献求助10
17秒前
17秒前
17秒前
田様应助zhouzhou采纳,获得10
17秒前
胡浩发布了新的文献求助10
18秒前
19秒前
19秒前
多多完成签到,获得积分10
20秒前
善学以致用应助victorchen采纳,获得10
20秒前
20秒前
Ava应助碧蓝丹烟采纳,获得10
23秒前
23秒前
66发布了新的文献求助10
23秒前
ding应助英勇的如音采纳,获得10
24秒前
126发布了新的文献求助10
24秒前
25秒前
慕青应助妮妮采纳,获得10
25秒前
25秒前
26秒前
丘比特应助风181013采纳,获得10
26秒前
机智的皮皮虾完成签到 ,获得积分10
28秒前
波西米亚发布了新的文献求助10
28秒前
酷波er应助Truman采纳,获得10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310775
求助须知:如何正确求助?哪些是违规求助? 2943489
关于积分的说明 8515515
捐赠科研通 2618853
什么是DOI,文献DOI怎么找? 1431463
科研通“疑难数据库(出版商)”最低求助积分说明 664468
邀请新用户注册赠送积分活动 649692