亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CLR2G: Cross modal Contrastive Learning on Radiology Report Generation

计算机科学 情态动词 人工智能 自然语言处理 材料科学 高分子化学
作者
Hongchen Xue,Qingzhi Ma,Guanfeng Liu,Jianfeng Qu,Yuanjun Liu,An Liu
标识
DOI:10.1145/3627673.3679668
摘要

The automatic generation of radiological imaging reports aims to produce accurate and coherent clinical descriptions based on X-ray images. This facilitates clinicians in completing the arduous task of report writing and advances clinical automation. The primary challenge in radiological imaging report generation lies in accurately capturing and describing abnormal regions in the images under data bias conditions, resulting in the generation of lengthy texts containing image details. Existing methods mostly rely on prior knowledge such as medical knowledge graphs, corpora, and image databases to assist models in generating more precise textual descriptions. However, these methods still struggle to identify rare anomalies in the images. To address this issue, we propose a two-stage training model, named CLR2G, based on cross-modal contrastive learning. This model delegates the task of capturing anomalies, particularly those challenging for the generative model trained with cross-entropy loss under data bias conditions, to a specialized abnormality capture component. Specifically, we employ a semantic matching loss function to train additional abnormal image and text encoders through cross-modal contrastive learning, facilitating the capture of 13 common anomalies. We utilize the anomalous image features, text features and their confidence probabilities as a posteriori knowledge to help the model generate accurate image reports. Experimental results demonstrate the state-of-the-art performance of our method on two widely used public datasets, IU-Xray and MIMIC-CXR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好绿柏发布了新的文献求助10
10秒前
小马甲应助dawn采纳,获得10
25秒前
35秒前
dawn发布了新的文献求助10
41秒前
善学以致用应助Fluoxtine采纳,获得10
55秒前
黑鲨完成签到 ,获得积分10
55秒前
Ava应助粗暴的坤采纳,获得10
58秒前
瘦瘦的迎南完成签到 ,获得积分10
1分钟前
1分钟前
谷雨秋发布了新的文献求助10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
J_Xu完成签到 ,获得积分10
1分钟前
所所应助凛玖niro采纳,获得10
2分钟前
2分钟前
凛玖niro发布了新的文献求助10
2分钟前
霖槿完成签到,获得积分10
2分钟前
2分钟前
十八完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
liuliu发布了新的文献求助30
3分钟前
4分钟前
烟花应助Li采纳,获得10
4分钟前
liuliu完成签到,获得积分20
4分钟前
4分钟前
4分钟前
ataybabdallah完成签到,获得积分10
4分钟前
4分钟前
4分钟前
开朗大雁完成签到 ,获得积分10
4分钟前
上官若男应助Marshall采纳,获得10
5分钟前
5分钟前
5分钟前
Marshall发布了新的文献求助10
5分钟前
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788653
求助须知:如何正确求助?哪些是违规求助? 5710088
关于积分的说明 15473780
捐赠科研通 4916652
什么是DOI,文献DOI怎么找? 2646501
邀请新用户注册赠送积分活动 1594171
关于科研通互助平台的介绍 1548587