CLR2G: Cross modal Contrastive Learning on Radiology Report Generation

计算机科学 情态动词 人工智能 自然语言处理 材料科学 高分子化学
作者
Hongchen Xue,Qingzhi Ma,Guanfeng Liu,Jianfeng Qu,Yuanjun Liu,An Liu
标识
DOI:10.1145/3627673.3679668
摘要

The automatic generation of radiological imaging reports aims to produce accurate and coherent clinical descriptions based on X-ray images. This facilitates clinicians in completing the arduous task of report writing and advances clinical automation. The primary challenge in radiological imaging report generation lies in accurately capturing and describing abnormal regions in the images under data bias conditions, resulting in the generation of lengthy texts containing image details. Existing methods mostly rely on prior knowledge such as medical knowledge graphs, corpora, and image databases to assist models in generating more precise textual descriptions. However, these methods still struggle to identify rare anomalies in the images. To address this issue, we propose a two-stage training model, named CLR2G, based on cross-modal contrastive learning. This model delegates the task of capturing anomalies, particularly those challenging for the generative model trained with cross-entropy loss under data bias conditions, to a specialized abnormality capture component. Specifically, we employ a semantic matching loss function to train additional abnormal image and text encoders through cross-modal contrastive learning, facilitating the capture of 13 common anomalies. We utilize the anomalous image features, text features and their confidence probabilities as a posteriori knowledge to help the model generate accurate image reports. Experimental results demonstrate the state-of-the-art performance of our method on two widely used public datasets, IU-Xray and MIMIC-CXR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助Jerry采纳,获得10
1秒前
清逸发布了新的文献求助10
2秒前
3秒前
3秒前
丘比特应助艺玲采纳,获得10
3秒前
研友_VZG7GZ应助57采纳,获得10
4秒前
玛卡巴卡发布了新的文献求助10
4秒前
4秒前
殷一丹发布了新的文献求助10
6秒前
6秒前
8秒前
云野应助了一采纳,获得10
8秒前
jks发布了新的文献求助10
9秒前
9秒前
lf发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
chenzy发布了新的文献求助10
10秒前
10秒前
展会恩发布了新的文献求助10
11秒前
艺玲完成签到,获得积分10
12秒前
疯狂的虔完成签到,获得积分10
12秒前
冷静凡天应助嗯哼哈哈采纳,获得10
12秒前
13秒前
Hexagram发布了新的文献求助10
13秒前
wangjue完成签到,获得积分10
13秒前
jks完成签到,获得积分10
13秒前
jing2000yr完成签到,获得积分10
14秒前
123456发布了新的文献求助10
14秒前
fhl发布了新的文献求助10
16秒前
chenzy完成签到,获得积分10
17秒前
18秒前
18秒前
dong应助孢子采纳,获得10
19秒前
20秒前
笨笨的傲芙完成签到,获得积分10
21秒前
21秒前
21秒前
21秒前
wcy发布了新的文献求助10
22秒前
Ava应助山东及时雨采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976107
求助须知:如何正确求助?哪些是违规求助? 3520330
关于积分的说明 11202435
捐赠科研通 3256819
什么是DOI,文献DOI怎么找? 1798504
邀请新用户注册赠送积分活动 877642
科研通“疑难数据库(出版商)”最低求助积分说明 806496