Towards personalized management of myasthenia gravis phenotypes: From the role of multi-omics to the emerging biomarkers and therapeutic targets

重症肌无力 组学 医学 个性化医疗 计算生物学 表型 临床表型 生物信息学 免疫学 生物 遗传学 基因
作者
Carmela Rita Balistreri,Claudia Vinciguerra,Daniele Magro,Vincenzo Di Stefano,Roberto Monastero
出处
期刊:Autoimmunity Reviews [Elsevier]
卷期号:23 (12): 103669-103669
标识
DOI:10.1016/j.autrev.2024.103669
摘要

Predicting the onset, progression, and outcome of rare and chronic neurological diseases, i.e. neuromuscular diseases, is an important goal for both clinicians and researchers and should guide clinical decision-making and personalized treatment plans. A prime example is myasthenia gravis (MG), an antibody-mediated disease that affects multiple components of the postsynaptic membrane, impairing neuromuscular transmission and producing fatigable muscle weakness. MG is characterized by several clinical phenotypes, defined by a broad spectrum of factors, which have contributed to the current lack of consensus on the optimal management and treatments of this disease and its related phenotypes (subtypes). This represents a crucial challenge in MG and encourages a revolutionary change in diagnostic, prognostic and therapeutic guidelines. Emerging factors, such as demographic, clinical and pathophysiological factors, must also be considered. Consequently, the different MG phenotypes are characterized by precise biological signatures, which could represent appropriate biomarkers and targets. Here we describe and discuss these new concepts, highlighting that, thanks to multi-omics technologies, the identification of emerging diagnostic/prognostic biomarkers, such as miRNAs, and the subsequent development of new diagnostic/therapeutic algorithms could be facilitated. The latter, in turn, could facilitate the management of different MG phenotypes also in a personalized manner. Limitations and advantages are also reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰富南霜完成签到,获得积分10
刚刚
么么么发布了新的文献求助10
刚刚
2秒前
2秒前
下克斯应助刘先森采纳,获得10
3秒前
Ava应助pp采纳,获得10
3秒前
古藤完成签到 ,获得积分10
3秒前
三井发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
烟花应助GERRARD采纳,获得10
6秒前
6秒前
Frank发布了新的文献求助10
6秒前
huan发布了新的文献求助10
7秒前
7秒前
8秒前
现代的木子完成签到 ,获得积分10
9秒前
Sue@00发布了新的文献求助10
9秒前
Ava应助段辉采纳,获得10
9秒前
安沐发布了新的文献求助10
9秒前
汉堡包应助包笑白采纳,获得10
10秒前
江湖有九哥完成签到,获得积分10
10秒前
mtxrtt完成签到,获得积分20
11秒前
感性的剑愁完成签到,获得积分10
12秒前
情怀应助研友_nPbeR8采纳,获得10
12秒前
13秒前
healer发布了新的文献求助10
14秒前
超级的立果完成签到 ,获得积分10
14秒前
14秒前
丘比特应助blawxx采纳,获得10
15秒前
丘比特应助小叶不吃香菜采纳,获得10
16秒前
心愿完成签到 ,获得积分10
17秒前
18秒前
lanshi完成签到 ,获得积分10
18秒前
18秒前
20秒前
mar1ne完成签到 ,获得积分10
21秒前
21秒前
不安的雪巧完成签到,获得积分20
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247936
求助须知:如何正确求助?哪些是违规求助? 2891185
关于积分的说明 8266538
捐赠科研通 2559374
什么是DOI,文献DOI怎么找? 1388196
科研通“疑难数据库(出版商)”最低求助积分说明 650711
邀请新用户注册赠送积分活动 627620