Towards personalized management of myasthenia gravis phenotypes: From the role of multi-omics to the emerging biomarkers and therapeutic targets

重症肌无力 组学 医学 个性化医疗 计算生物学 表型 临床表型 生物信息学 免疫学 生物 遗传学 基因
作者
Carmela Rita Balistreri,Claudia Vinciguerra,Daniele Magro,Vincenzo Di Stefano,Roberto Monastero
出处
期刊:Autoimmunity Reviews [Elsevier BV]
卷期号:23 (12): 103669-103669 被引量:2
标识
DOI:10.1016/j.autrev.2024.103669
摘要

Predicting the onset, progression, and outcome of rare and chronic neurological diseases, i.e. neuromuscular diseases, is an important goal for both clinicians and researchers and should guide clinical decision-making and personalized treatment plans. A prime example is myasthenia gravis (MG), an antibody-mediated disease that affects multiple components of the postsynaptic membrane, impairing neuromuscular transmission and producing fatigable muscle weakness. MG is characterized by several clinical phenotypes, defined by a broad spectrum of factors, which have contributed to the current lack of consensus on the optimal management and treatments of this disease and its related phenotypes (subtypes). This represents a crucial challenge in MG and encourages a revolutionary change in diagnostic, prognostic and therapeutic guidelines. Emerging factors, such as demographic, clinical and pathophysiological factors, must also be considered. Consequently, the different MG phenotypes are characterized by precise biological signatures, which could represent appropriate biomarkers and targets. Here we describe and discuss these new concepts, highlighting that, thanks to multi-omics technologies, the identification of emerging diagnostic/prognostic biomarkers, such as miRNAs, and the subsequent development of new diagnostic/therapeutic algorithms could be facilitated. The latter, in turn, could facilitate the management of different MG phenotypes also in a personalized manner. Limitations and advantages are also reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syrrr要发文章完成签到 ,获得积分10
1秒前
zhy发布了新的文献求助10
1秒前
丘比特应助葫芦家二娃采纳,获得10
1秒前
舒心的完成签到,获得积分10
1秒前
思源应助果子采纳,获得10
1秒前
winwin完成签到,获得积分10
2秒前
1111发布了新的文献求助10
2秒前
大个应助满月张采纳,获得10
2秒前
心媛完成签到 ,获得积分10
2秒前
65623132完成签到,获得积分10
2秒前
hhh发布了新的文献求助10
2秒前
bob发布了新的文献求助10
3秒前
z.发布了新的文献求助10
4秒前
4秒前
科研通AI5应助权于你采纳,获得10
4秒前
4秒前
细腻的惜儿完成签到 ,获得积分10
4秒前
4秒前
4秒前
hkh发布了新的文献求助10
5秒前
含蓄含烟完成签到,获得积分10
6秒前
Yangjin完成签到,获得积分10
8秒前
心媛关注了科研通微信公众号
8秒前
梁嘉琦发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
Watson_Lu发布了新的文献求助10
9秒前
10秒前
小琦无敌完成签到,获得积分10
10秒前
zhutae应助年轻的白梦采纳,获得10
10秒前
11秒前
九秋霜完成签到,获得积分10
11秒前
沉默是金完成签到,获得积分20
11秒前
苏卿应助Yuan采纳,获得10
11秒前
SciGPT应助song99采纳,获得10
12秒前
Orange应助zhy采纳,获得10
12秒前
12秒前
云尘忆梦完成签到 ,获得积分20
13秒前
程风破浪发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700765
求助须知:如何正确求助?哪些是违规求助? 3251047
关于积分的说明 9872817
捐赠科研通 2963115
什么是DOI,文献DOI怎么找? 1624972
邀请新用户注册赠送积分活动 769625
科研通“疑难数据库(出版商)”最低求助积分说明 742423