A robust image segmentation and synthesis pipeline for histopathology

人工智能 基本事实 分割 计算机科学 像素 编码器 模式识别(心理学) 杠杆(统计) 数字化病理学 规范化(社会学) 判别式 人类学 操作系统 社会学
作者
Muhammad Jehanzaib,Yasin Almalıoğlu,Kutsev Bengisu Ozyoruk,Drew F. K. Williamson,T. A. R. B. T. Abdullah,Kayhan Başak,Derya Demir,G. Evren Keles,Kashif Zafar,Mehmet Turan
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103344-103344 被引量:1
标识
DOI:10.1016/j.media.2024.103344
摘要

Significant diagnostic variability between and within observers persists in pathology, despite the fact that digital slide images provide the ability to measure and quantify features much more precisely compared to conventional methods. Automated and accurate segmentation of cancerous cell and tissue regions can streamline the diagnostic process, providing insights into the cancer progression, and helping experts decide on the most effective treatment. Here, we evaluate the performance of the proposed PathoSeg model, with an architecture comprising of a modified HRNet encoder and a UNet++ decoder integrated with a CBAM block to utilize attention mechanism for an improved segmentation capability. We demonstrate that PathoSeg outperforms the current state-of-the-art (SOTA) networks in both quantitative and qualitative assessment of instance and semantic segmentation. Notably, we leverage the use of synthetic data generated by PathopixGAN, which effectively addresses the data imbalance problem commonly encountered in histopathology datasets, further improving the performance of PathoSeg. It utilizes spatially adaptive normalization within a generative and discriminative mechanism to synthesize diverse histopathological environments dictated through semantic information passed through pixel-level annotated Ground Truth semantic masks.Besides, we contribute to the research community by providing an in-house dataset that includes semantically segmented masks for breast carcinoma tubules (BCT), micro/macrovesicular steatosis of the liver (MSL), and prostate carcinoma glands (PCG). In the first part of the dataset, we have a total of 14 whole slide images from 13 patients' liver, with fat cell segmented masks, totaling 951 masks of size 512 × 512 pixels. In the second part, it includes 17 whole slide images from 13 patients with prostate carcinoma gland segmentation masks, amounting to 30,000 masks of size 512 × 512 pixels. In the third part, the dataset contains 51 whole slides from 36 patients, with breast carcinoma tubule masks totaling 30,000 masks of size 512 × 512 pixels. To ensure transparency and encourage further research, we will make this dataset publicly available for non-commercial and academic purposes. To facilitate reproducibility and encourage further research, we will also make our code and pre-trained models publicly available at https://github.com/DeepMIALab/PathoSeg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
徐若楠完成签到,获得积分10
3秒前
彭于晏应助Keira_Chang采纳,获得10
3秒前
kellogg关注了科研通微信公众号
4秒前
CBY完成签到,获得积分10
5秒前
6秒前
6秒前
科研通AI2S应助青筠采纳,获得10
7秒前
7秒前
顾矜应助天天采纳,获得10
8秒前
爆米花应助天天采纳,获得10
8秒前
疯狂的白昼完成签到 ,获得积分10
9秒前
10秒前
隐形曼青应助迷路又夏采纳,获得10
11秒前
爱搞科研的小冯完成签到,获得积分20
13秒前
qiang完成签到,获得积分20
13秒前
Karna完成签到,获得积分10
13秒前
15秒前
Jasper应助qianqina采纳,获得10
15秒前
执着的宝发布了新的文献求助10
15秒前
搜集达人应助墨斗在拼搏采纳,获得10
17秒前
小白菜完成签到,获得积分20
17秒前
CodeCraft应助迷路的初柔采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
tansl1989发布了新的文献求助10
18秒前
夜月发布了新的文献求助10
18秒前
李健的小迷弟应助赫连烙采纳,获得10
19秒前
甜甜秋荷完成签到,获得积分10
19秒前
达不溜qp发布了新的文献求助10
20秒前
20秒前
进击的然完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
思源应助科研通管家采纳,获得30
21秒前
NiL应助科研通管家采纳,获得20
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425164
求助须知:如何正确求助?哪些是违规求助? 4539269
关于积分的说明 14166518
捐赠科研通 4456411
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435224
关于科研通互助平台的介绍 1412564