亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A robust image segmentation and synthesis pipeline for histopathology

人工智能 基本事实 分割 计算机科学 像素 编码器 模式识别(心理学) 杠杆(统计) 数字化病理学 规范化(社会学) 判别式 人类学 操作系统 社会学
作者
Muhammad Jehanzaib,Yasin Almalıoğlu,Kutsev Bengisu Ozyoruk,Drew F. K. Williamson,T. A. R. B. T. Abdullah,Kayhan Başak,Derya Demir,G. Evren Keles,Kashif Zafar,Mehmet Turan
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103344-103344 被引量:1
标识
DOI:10.1016/j.media.2024.103344
摘要

Significant diagnostic variability between and within observers persists in pathology, despite the fact that digital slide images provide the ability to measure and quantify features much more precisely compared to conventional methods. Automated and accurate segmentation of cancerous cell and tissue regions can streamline the diagnostic process, providing insights into the cancer progression, and helping experts decide on the most effective treatment. Here, we evaluate the performance of the proposed PathoSeg model, with an architecture comprising of a modified HRNet encoder and a UNet++ decoder integrated with a CBAM block to utilize attention mechanism for an improved segmentation capability. We demonstrate that PathoSeg outperforms the current state-of-the-art (SOTA) networks in both quantitative and qualitative assessment of instance and semantic segmentation. Notably, we leverage the use of synthetic data generated by PathopixGAN, which effectively addresses the data imbalance problem commonly encountered in histopathology datasets, further improving the performance of PathoSeg. It utilizes spatially adaptive normalization within a generative and discriminative mechanism to synthesize diverse histopathological environments dictated through semantic information passed through pixel-level annotated Ground Truth semantic masks.Besides, we contribute to the research community by providing an in-house dataset that includes semantically segmented masks for breast carcinoma tubules (BCT), micro/macrovesicular steatosis of the liver (MSL), and prostate carcinoma glands (PCG). In the first part of the dataset, we have a total of 14 whole slide images from 13 patients' liver, with fat cell segmented masks, totaling 951 masks of size 512 × 512 pixels. In the second part, it includes 17 whole slide images from 13 patients with prostate carcinoma gland segmentation masks, amounting to 30,000 masks of size 512 × 512 pixels. In the third part, the dataset contains 51 whole slides from 36 patients, with breast carcinoma tubule masks totaling 30,000 masks of size 512 × 512 pixels. To ensure transparency and encourage further research, we will make this dataset publicly available for non-commercial and academic purposes. To facilitate reproducibility and encourage further research, we will also make our code and pre-trained models publicly available at https://github.com/DeepMIALab/PathoSeg.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助饱满绫采纳,获得10
27秒前
55秒前
饱满绫发布了新的文献求助10
59秒前
balko发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Frank发布了新的文献求助10
1分钟前
快乐谷蓝完成签到,获得积分10
2分钟前
饱满绫完成签到,获得积分20
2分钟前
南寅完成签到,获得积分10
2分钟前
土豆你个西红柿完成签到 ,获得积分10
2分钟前
陶醉的蜜蜂完成签到,获得积分10
2分钟前
jayliu完成签到,获得积分10
2分钟前
3分钟前
桥洞居士发布了新的文献求助10
3分钟前
天天快乐应助科研通管家采纳,获得10
3分钟前
Frank发布了新的文献求助10
3分钟前
苏梗完成签到 ,获得积分10
3分钟前
专一的忆寒完成签到,获得积分10
3分钟前
浮游应助含蓄草丛采纳,获得10
3分钟前
3分钟前
桥洞居士完成签到,获得积分10
3分钟前
4分钟前
4分钟前
曦耀发布了新的文献求助10
4分钟前
韩小土豆完成签到 ,获得积分10
4分钟前
伯劳完成签到,获得积分10
5分钟前
勇敢的蝙蝠侠完成签到 ,获得积分10
5分钟前
天天快乐应助科研通管家采纳,获得10
5分钟前
www发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
吕敬瑶发布了新的文献求助10
6分钟前
www完成签到,获得积分10
6分钟前
miki完成签到 ,获得积分10
7分钟前
7分钟前
顾难摧完成签到 ,获得积分10
7分钟前
7分钟前
Hello应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634956
求助须知:如何正确求助?哪些是违规求助? 4734376
关于积分的说明 14989532
捐赠科研通 4792698
什么是DOI,文献DOI怎么找? 2559792
邀请新用户注册赠送积分活动 1520087
关于科研通互助平台的介绍 1480167