Computational design of serine hydrolases

丝氨酸 化学 计算生物学 生物化学 生化工程 计算机科学 生物 工程类
作者
Anna Lauko,Samuel J. Pellock,Ivan Anischanka,Kiera H. Sumida,David Juergens,Woody Ahern,Alex Shida,Andrew C. Hunt,Indrek Kalvet,Christoffer Norn,Ian R. Humphreys,Cooper S. Jamieson,Alex Kang,Evans Brackenbrough,Asim K. Bera,Banumathi Sankaran,K. N. Houk,David Baker
标识
DOI:10.1101/2024.08.29.610411
摘要

Abstract Enzymes that proceed through multistep reaction mechanisms often utilize complex, polar active sites positioned with sub-angstrom precision to mediate distinct chemical steps, which makes their de novo construction extremely challenging. We sought to overcome this challenge using the classic catalytic triad and oxyanion hole of serine hydrolases as a model system. We used RFdiffusion 1 to generate proteins housing catalytic sites of increasing complexity and varying geometry, and a newly developed ensemble generation method called ChemNet to assess active site geometry and preorganization at each step of the reaction. Experimental characterization revealed novel serine hydrolases that catalyze ester hydrolysis with catalytic efficiencies ( k cat / K m ) up to 3.8 × 10 3 M -1 s -1 , closely match the design models (Cα RMSDs < 1 Å), and have folds distinct from natural serine hydrolases. In silico selection of designs based on active site preorganization across the reaction coordinate considerably increased success rates, enabling identification of new catalysts in screens of as few as 20 designs. Our de novo buildup approach provides insight into the geometric determinants of catalysis that complements what can be obtained from structural and mutational studies of native enzymes (in which catalytic group geometry and active site makeup cannot be so systematically varied), and provides a roadmap for the design of industrially relevant serine hydrolases and, more generally, for designing complex enzymes that catalyze multi-step transformations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助云宝采纳,获得10
刚刚
深情安青应助伟伟采纳,获得10
1秒前
pluto应助小周碎碎念采纳,获得30
2秒前
2秒前
英勇涔发布了新的文献求助10
4秒前
深情安青应助lxn采纳,获得30
5秒前
Hello应助ZWGS采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
幸福遥完成签到,获得积分10
6秒前
文轩发布了新的文献求助10
8秒前
小毕可乐发布了新的文献求助10
9秒前
10秒前
zpq发布了新的文献求助30
10秒前
Akim应助yangxt-iga采纳,获得10
11秒前
younger~完成签到,获得积分20
11秒前
123qwe发布了新的文献求助10
11秒前
bing发布了新的文献求助10
12秒前
思源应助夕夕口口采纳,获得10
12秒前
香蕉觅云应助kk采纳,获得10
12秒前
我是老大应助shor0414采纳,获得10
13秒前
淡淡的飞雪应助朴素海亦采纳,获得10
13秒前
14秒前
fleee完成签到,获得积分10
14秒前
牛肉面应助zhangst采纳,获得20
15秒前
科研通AI2S应助失眠觅云采纳,获得10
15秒前
15秒前
cocolu应助失眠觅云采纳,获得10
15秒前
Singularity应助yueyue采纳,获得10
15秒前
酷波er应助失眠觅云采纳,获得20
15秒前
pluto应助白华苍松采纳,获得150
15秒前
illion1完成签到,获得积分20
16秒前
华仔应助长情的大门采纳,获得10
16秒前
16秒前
努力合成发布了新的文献求助10
17秒前
Amandar完成签到,获得积分10
18秒前
18秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Cognitive Paradigms in Knowledge Organisation 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306889
求助须知:如何正确求助?哪些是违规求助? 2940724
关于积分的说明 8498169
捐赠科研通 2614869
什么是DOI,文献DOI怎么找? 1428544
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648283