Computational design of serine hydrolases

丝氨酸 化学 计算生物学 生物化学 生化工程 计算机科学 生物 工程类
作者
Anna Lauko,Samuel J. Pellock,Ivan Anischanka,Kiera H. Sumida,David Juergens,Woody Ahern,Alex Shida,Andrew C. Hunt,Indrek Kalvet,Christoffer Norn,Ian R. Humphreys,Cooper S. Jamieson,Alex Kang,Evans Brackenbrough,Asim K. Bera,Banumathi Sankaran,K. N. Houk,David Baker
标识
DOI:10.1101/2024.08.29.610411
摘要

Abstract Enzymes that proceed through multistep reaction mechanisms often utilize complex, polar active sites positioned with sub-angstrom precision to mediate distinct chemical steps, which makes their de novo construction extremely challenging. We sought to overcome this challenge using the classic catalytic triad and oxyanion hole of serine hydrolases as a model system. We used RFdiffusion 1 to generate proteins housing catalytic sites of increasing complexity and varying geometry, and a newly developed ensemble generation method called ChemNet to assess active site geometry and preorganization at each step of the reaction. Experimental characterization revealed novel serine hydrolases that catalyze ester hydrolysis with catalytic efficiencies ( k cat / K m ) up to 3.8 × 10 3 M -1 s -1 , closely match the design models (Cα RMSDs < 1 Å), and have folds distinct from natural serine hydrolases. In silico selection of designs based on active site preorganization across the reaction coordinate considerably increased success rates, enabling identification of new catalysts in screens of as few as 20 designs. Our de novo buildup approach provides insight into the geometric determinants of catalysis that complements what can be obtained from structural and mutational studies of native enzymes (in which catalytic group geometry and active site makeup cannot be so systematically varied), and provides a roadmap for the design of industrially relevant serine hydrolases and, more generally, for designing complex enzymes that catalyze multi-step transformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气谷丝发布了新的文献求助10
刚刚
1秒前
Owen应助SZH采纳,获得10
1秒前
2秒前
2秒前
郁金香发布了新的文献求助10
2秒前
xiaoming完成签到 ,获得积分10
3秒前
学术蝗虫完成签到,获得积分10
3秒前
sayso完成签到,获得积分10
3秒前
Orange应助123采纳,获得10
4秒前
FashionBoy应助zyy采纳,获得10
5秒前
5秒前
5秒前
5秒前
爱吃米线应助单薄雅阳采纳,获得20
7秒前
134完成签到,获得积分10
8秒前
8秒前
awenger发布了新的文献求助10
8秒前
porkkk发布了新的文献求助10
8秒前
受伤冰菱完成签到,获得积分10
8秒前
10秒前
李琦完成签到 ,获得积分10
11秒前
悦耳白开水完成签到,获得积分10
12秒前
12秒前
12秒前
李成昊完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
hh发布了新的文献求助10
15秒前
may完成签到,获得积分10
15秒前
呆头鹅完成签到 ,获得积分10
15秒前
wenlon发布了新的文献求助10
15秒前
科研通AI6应助hahaha采纳,获得10
15秒前
15秒前
蹦蹦又跳跳完成签到,获得积分10
16秒前
地西泮完成签到,获得积分10
16秒前
xiahua发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653193
求助须知:如何正确求助?哪些是违规求助? 4789427
关于积分的说明 15063229
捐赠科研通 4811788
什么是DOI,文献DOI怎么找? 2574069
邀请新用户注册赠送积分活动 1529802
关于科研通互助平台的介绍 1488465