Computational design of serine hydrolases

丝氨酸 化学 计算生物学 生物化学 生化工程 计算机科学 生物 工程类
作者
Anna Lauko,Samuel J. Pellock,Ivan Anischanka,Kiera H. Sumida,David Juergens,Woody Ahern,Alex Shida,Andrew C. Hunt,Indrek Kalvet,Christoffer Norn,Ian R. Humphreys,Cooper S. Jamieson,Alex Kang,Evans Brackenbrough,Asim K. Bera,Banumathi Sankaran,K. N. Houk,David Baker
标识
DOI:10.1101/2024.08.29.610411
摘要

Abstract Enzymes that proceed through multistep reaction mechanisms often utilize complex, polar active sites positioned with sub-angstrom precision to mediate distinct chemical steps, which makes their de novo construction extremely challenging. We sought to overcome this challenge using the classic catalytic triad and oxyanion hole of serine hydrolases as a model system. We used RFdiffusion 1 to generate proteins housing catalytic sites of increasing complexity and varying geometry, and a newly developed ensemble generation method called ChemNet to assess active site geometry and preorganization at each step of the reaction. Experimental characterization revealed novel serine hydrolases that catalyze ester hydrolysis with catalytic efficiencies ( k cat / K m ) up to 3.8 × 10 3 M -1 s -1 , closely match the design models (Cα RMSDs < 1 Å), and have folds distinct from natural serine hydrolases. In silico selection of designs based on active site preorganization across the reaction coordinate considerably increased success rates, enabling identification of new catalysts in screens of as few as 20 designs. Our de novo buildup approach provides insight into the geometric determinants of catalysis that complements what can be obtained from structural and mutational studies of native enzymes (in which catalytic group geometry and active site makeup cannot be so systematically varied), and provides a roadmap for the design of industrially relevant serine hydrolases and, more generally, for designing complex enzymes that catalyze multi-step transformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MADKAI发布了新的文献求助10
1秒前
lulu完成签到,获得积分10
1秒前
沉静青寒完成签到,获得积分10
1秒前
REN关闭了REN文献求助
2秒前
好运锦鲤完成签到 ,获得积分10
2秒前
美有姬完成签到,获得积分10
3秒前
万能图书馆应助何博士采纳,获得10
3秒前
科研通AI2S应助蘑菇采纳,获得10
3秒前
一平发布了新的文献求助10
4秒前
王一博完成签到,获得积分10
4秒前
5秒前
nihil完成签到,获得积分10
5秒前
活力的泥猴桃完成签到 ,获得积分10
6秒前
6秒前
7秒前
obito完成签到,获得积分10
7秒前
娜行发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
Ck完成签到,获得积分10
9秒前
烦烦完成签到 ,获得积分10
10秒前
百宝发布了新的文献求助10
11秒前
jiangnan发布了新的文献求助10
11秒前
Sev完成签到,获得积分10
11秒前
11秒前
可耐的乘风完成签到,获得积分10
11秒前
FIN应助obito采纳,获得30
12秒前
啾啾发布了新的文献求助10
12秒前
爱学习的向日葵完成签到,获得积分10
13秒前
13秒前
华仔应助泛泛之交采纳,获得10
14秒前
雪123发布了新的文献求助10
14秒前
14秒前
15秒前
charon发布了新的文献求助10
15秒前
凶狠的食铁兽完成签到,获得积分10
15秒前
星辰大海应助花花啊采纳,获得10
15秒前
华仔应助liuyingke采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672