Bioinspired Functional Composites for Enhanced Thermally Conductivity via Fractal-Growth CuNP Fillers

复合材料 材料科学 导电体 电导率 纳米颗粒 极限抗拉强度 热导率 纳米技术 化学 物理化学
作者
Xiao Hou,Fangming Shen,Mingzhou Chen,Lina Song,Quan Liu,Yongyuan Ren,Xiaoli Zhan,Qinghua Zhang
出处
期刊:ACS applied bio materials [American Chemical Society]
卷期号:7 (9): 6297-6305
标识
DOI:10.1021/acsabm.4c00905
摘要

Thermal conduction for electronic devices has attracted extensive attention in light of the development of 5G communication. Thermally conductive materials with high thermal conductivity and extensive mechanical flexibility are extremely desirable in practical applications. However, the construction of efficient interconnected conductive pathways and continuous conductive networks is inadequate for either processing or actual usage in existing technologies. In this work, spherical copper nanoparticles (S-CuNPs) and urchin-inspired fractal-growth CuNPs (U-CuNPs), thermally conductive metal fillers induced by ionic liquids, were fabricated successfully through the electrochemical deposition method. Compared to S-CuNPs, the U-CuNPs shows larger specific surface contact area, thus making it easier to build a continuous conductive pathway network in the corresponding U-CuNPs/liquid silicone rubber (LSR) thermally conductive composites. The optimal loading of CuNP fillers was determined by evaluating the rheological performance of the prepolymer and the mechanical properties and thermal conductivity performances of the composites. When the filler loading is 150 phr, the U-CuNPs/LSR produces optimal mechanical properties (e.g., tensile strength and modulus), thermal conductivity (above 1000% improvement compared to pure LSR), and heating/cooling efficiency. The enhanced thermal conductivity of U-CuNPs/LSR was also confirmed through the finite element analysis (FEA) overall temperature distribution, indicating that U-CuNPs with larger specific surface contact areas exhibit more advantages in forming a continuous network in composites than S-CuNPs, making U-CuNPs/LSR a promising and competitive alternative to traditional flexible thermally interface materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wangqingxia完成签到,获得积分10
2秒前
隐形曼青应助moonlight采纳,获得10
2秒前
4秒前
wangqingxia发布了新的文献求助10
5秒前
亦久完成签到 ,获得积分10
7秒前
9秒前
13秒前
16秒前
端庄的孤风完成签到 ,获得积分10
17秒前
18秒前
ding应助机智的采萱采纳,获得10
23秒前
zkwww完成签到 ,获得积分10
25秒前
26秒前
tuanheqi应助lezbj99采纳,获得30
27秒前
酷波er应助cheche采纳,获得10
40秒前
VLH完成签到,获得积分10
45秒前
依然灬聆听完成签到,获得积分10
45秒前
原野完成签到,获得积分10
46秒前
jjaigll12完成签到 ,获得积分10
46秒前
49秒前
50秒前
53秒前
cheche发布了新的文献求助10
54秒前
Tohka完成签到 ,获得积分10
56秒前
拉拉霍霍发布了新的文献求助10
57秒前
59秒前
摇光完成签到,获得积分10
1分钟前
半柚应助典雅的俊驰采纳,获得10
1分钟前
Lyubb发布了新的文献求助10
1分钟前
cheche完成签到,获得积分10
1分钟前
ding应助习惯采纳,获得10
1分钟前
1分钟前
杳鸢应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
杳鸢应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
拉拉霍霍完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372271
求助须知:如何正确求助?哪些是违规求助? 2990115
关于积分的说明 8738751
捐赠科研通 2673478
什么是DOI,文献DOI怎么找? 1464558
科研通“疑难数据库(出版商)”最低求助积分说明 677569
邀请新用户注册赠送积分活动 668978