Low-light image enhancement using generative adversarial networks

对抗制 生成对抗网络 生成语法 计算机科学 图像(数学) 人工智能 计算机视觉 模式识别(心理学)
作者
Litian Wang,Liquan Zhao,Tie Zhong,Chunming Wu
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-69505-1
摘要

In low-light environments, the amount of light captured by the camera sensor is reduced, resulting in lower image brightness. This makes it difficult to recognize or completely lose details in the image, which affects subsequent processing of low-light images. Low-light image enhancement methods can increase image brightness while better-restoring color and detail information. A generative adversarial network is proposed for low-quality image enhancement to improve the quality of low-light images. This network consists of a generative network and an adversarial network. In the generative network, a multi-scale feature extraction module, which consists of dilated convolutions, regular convolutions, max pooling, and average pooling, is designed. This module can extract low-light image features from multiple scales, thereby obtaining richer feature information. Secondly, an illumination attention module is designed to reduce the interference of redundant features. This module assigns greater weight to important illumination features, enabling the network to extract illumination features more effectively. Finally, an encoder-decoder generative network is designed. It uses the multi-scale feature extraction module, illumination attention module, and other conventional modules to enhance low-light images and improve quality. Regarding the adversarial network, a dual-discriminator structure is designed. This network has a global adversarial network and a local adversarial network. They determine if the input image is actual or generated from global and local features, enhancing the performance of the generator network. Additionally, an improved loss function is proposed by introducing color loss and perceptual loss into the conventional loss function. It can better measure the color loss between the generated image and a normally illuminated image, thus reducing color distortion during the enhancement process. The proposed method, along with other methods, is tested using both synthesized and real low-light images. Experimental results show that, compared to other methods, the images enhanced by the proposed method are closer to normally illuminated images for synthetic low-light images. For real low-light images, the images enhanced by the proposed method retain more details, are more apparent, and exhibit higher performance metrics. Overall, compared to other methods, the proposed method demonstrates better image enhancement capabilities for both synthetic and real low-light images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助勤能补拙采纳,获得10
1秒前
1秒前
liuhai完成签到,获得积分10
2秒前
御景风完成签到,获得积分10
2秒前
陈小瑜完成签到,获得积分10
2秒前
Teio发布了新的文献求助30
2秒前
小小宇宇完成签到,获得积分10
2秒前
xiaoxiao发布了新的文献求助10
3秒前
Leyi完成签到,获得积分10
3秒前
3秒前
搁浅发布了新的文献求助10
4秒前
源味怪豆发布了新的文献求助10
4秒前
5秒前
5秒前
晴天完成签到,获得积分10
5秒前
6秒前
Bethune124完成签到 ,获得积分10
6秒前
6秒前
夏晴发布了新的文献求助10
7秒前
坚强的咖啡豆完成签到,获得积分10
7秒前
兴奋映雁关注了科研通微信公众号
9秒前
enen发布了新的文献求助50
9秒前
Mao完成签到,获得积分10
9秒前
醒言应助123采纳,获得10
10秒前
10秒前
无辜梨愁完成签到 ,获得积分10
11秒前
11秒前
大意的孤晴完成签到,获得积分10
11秒前
12秒前
奕火发布了新的文献求助10
13秒前
13秒前
D-D发布了新的文献求助10
13秒前
cxm完成签到,获得积分10
16秒前
懦弱的时光完成签到,获得积分10
17秒前
胡萝卜完成签到,获得积分10
17秒前
wanglu发布了新的文献求助10
17秒前
cphhu发布了新的文献求助10
18秒前
Orange应助开心笑翠采纳,获得10
18秒前
傲娇老五完成签到 ,获得积分10
18秒前
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254658
求助须知:如何正确求助?哪些是违规求助? 2896872
关于积分的说明 8294754
捐赠科研通 2565788
什么是DOI,文献DOI怎么找? 1393363
科研通“疑难数据库(出版商)”最低求助积分说明 652508
邀请新用户注册赠送积分活动 630044