A protein pre-trained model-based approach for the identification of the liquid-liquid phase separation (LLPS) proteins

计算机科学 人工智能 鉴定(生物学) 机器学习 计算生物学 卷积神经网络 文字2vec 生物 嵌入 植物
作者
Zahoor Ahmed,Kiran Shahzadi,Sebu Aboma Temesgen,Ahmad Basharat,Xiang Chen,Ning Lin,Hasan Zulfiqar,Hao Lin,Yan-Ting Jin
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:277: 134146-134146 被引量:2
标识
DOI:10.1016/j.ijbiomac.2024.134146
摘要

Liquid-liquid phase separation (LLPS) regulates many biological processes including RNA metabolism, chromatin rearrangement, and signal transduction. Aberrant LLPS potentially leads to serious diseases. Therefore, the identification of the LLPS proteins is crucial. Traditionally, biochemistry-based methods for identifying LLPS proteins are costly, time-consuming, and laborious. In contrast, artificial intelligence-based approaches are fast and cost-effective and can be a better alternative to biochemistry-based methods. Previous research methods employed word2vec in conjunction with machine learning or deep learning algorithms. Although word2vec captures word semantics and relationships, it might not be effective in capturing features relevant to protein classification, like physicochemical properties, evolutionary relationships, or structural features. Additionally, other studies often focused on a limited set of features for model training, including planar π contact frequency, pi-pi, and β-pairing propensities. To overcome such shortcomings, this study first constructed a reliable dataset containing 1206 protein sequences, including 603 LLPS and 603 non-LLPS protein sequences. Then a computational model was proposed to efficiently identify the LLPS proteins by perceiving semantic information of protein sequences directly; using an ESM2-36 pre-trained model based on transformer architecture in conjunction with a convolutional neural network. The model could achieve an accuracy of 85.86 % and 89.26 %, respectively on training data and test data, surpassing the accuracy of previous studies. The performance demonstrates the potential of our computational methods as efficient alternatives for identifying LLPS proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DecC发布了新的文献求助30
1秒前
霸气傲蕾发布了新的文献求助10
1秒前
hahhha发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
ll完成签到,获得积分10
1秒前
2秒前
糊图酱完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
月落星沉发布了新的文献求助10
3秒前
TingWan发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
晨曦发布了新的文献求助10
4秒前
LYB吕完成签到,获得积分10
4秒前
LIEN应助mmmm采纳,获得10
4秒前
5秒前
英姑应助薛武采纳,获得10
5秒前
田様应助STP顶峰相见采纳,获得30
5秒前
Charlse_Su完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
MX完成签到,获得积分10
6秒前
6秒前
Devil发布了新的文献求助10
6秒前
搞怪人雄发布了新的文献求助10
6秒前
zyzy发布了新的文献求助10
6秒前
似乎一场梦完成签到 ,获得积分10
7秒前
FAN完成签到,获得积分10
7秒前
uupp完成签到,获得积分10
7秒前
xiaofeiyang1122完成签到,获得积分10
8秒前
daisy完成签到,获得积分10
8秒前
子车茗应助可言鳕鱼采纳,获得50
8秒前
9秒前
Hanoi347应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667488
求助须知:如何正确求助?哪些是违规求助? 4886195
关于积分的说明 15120469
捐赠科研通 4826311
什么是DOI,文献DOI怎么找? 2583920
邀请新用户注册赠送积分活动 1537973
关于科研通互助平台的介绍 1496095