A protein pre-trained model-based approach for the identification of the liquid-liquid phase separation (LLPS) proteins

液态液体 鉴定(生物学) 色谱法 化学 相(物质) 液相 生物系统 物理 生物 热力学 有机化学 植物
作者
Zahoor Ahmed,Kiran Shahzadi,Sebu Aboma Temesgen,Basharat Ahmad,Xiang Chen,Ning Lin,Hasan Zulfiqar,Hao Lin,Yan-Ting Jin
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:: 134146-134146
标识
DOI:10.1016/j.ijbiomac.2024.134146
摘要

Liquid-liquid phase separation (LLPS) regulates many biological processes including RNA metabolism, chromatin rearrangement, and signal transduction. Aberrant LLPS potentially leads to serious diseases. Therefore, the identification of the LLPS proteins is crucial. Traditionally, biochemistry-based methods for identifying LLPS proteins are costly, time-consuming, and laborious. In contrast, artificial intelligence-based approaches are fast and cost-effective and can be a better alternative to biochemistry-based methods. Previous research methods employed word2vec in conjunction with machine learning or deep learning algorithms. Although word2vec captures word semantics and relationships, it might not be effective in capturing features relevant to protein classification, like physicochemical properties, evolutionary relationships, or structural features. Additionally, other studies often focused on a limited set of features for model training, including planar π contact frequency, pi-pi, and β-pairing propensities. To overcome such shortcomings, this study first constructed a reliable dataset containing 1206 protein sequences, including 603 LLPS and 603 non-LLPS protein sequences. Then a computational model was proposed to efficiently identify the LLPS proteins by perceiving semantic information of protein sequences directly; using an ESM2-36 pre-trained model based on transformer architecture in conjunction with a convolutional neural network. The model could achieve an accuracy of 85.86 % and 89.26 %, respectively on training data and test data, surpassing the accuracy of previous studies. The performance demonstrates the potential of our computational methods as efficient alternatives for identifying LLPS proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
3秒前
5秒前
DJ国完成签到,获得积分10
6秒前
酰胺back发布了新的文献求助30
7秒前
gebiheishuini发布了新的文献求助10
7秒前
张忠泽发布了新的文献求助10
8秒前
夏尔发布了新的文献求助30
9秒前
19秒前
alex发布了新的文献求助10
19秒前
Hello应助iiiau采纳,获得10
22秒前
24秒前
hunbaekkkkk完成签到 ,获得积分10
26秒前
26秒前
lm发布了新的文献求助10
27秒前
樂酉完成签到 ,获得积分10
27秒前
雪途发布了新的文献求助10
29秒前
0713完成签到,获得积分10
29秒前
luym完成签到,获得积分10
30秒前
槐序零玖发布了新的文献求助10
33秒前
dddd完成签到,获得积分10
35秒前
科研小辣机完成签到 ,获得积分10
35秒前
37秒前
科研通AI2S应助66_采纳,获得10
38秒前
田様应助高高翅膀采纳,获得10
38秒前
有魅力一刀完成签到,获得积分10
39秒前
Cape发布了新的文献求助10
39秒前
爱静静应助mbf采纳,获得10
39秒前
季冬关注了科研通微信公众号
41秒前
耕云钓月完成签到 ,获得积分10
42秒前
43秒前
大模型应助花开不败采纳,获得10
43秒前
44秒前
45秒前
46秒前
夏尔发布了新的文献求助10
46秒前
川上富江完成签到 ,获得积分10
52秒前
安静的飞珍完成签到,获得积分10
52秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343244
求助须知:如何正确求助?哪些是违规求助? 2970337
关于积分的说明 8643473
捐赠科研通 2650290
什么是DOI,文献DOI怎么找? 1451220
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661447