亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A protein pre-trained model-based approach for the identification of the liquid-liquid phase separation (LLPS) proteins

计算机科学 人工智能 鉴定(生物学) 机器学习 计算生物学 卷积神经网络 文字2vec 生物 嵌入 植物
作者
Zahoor Ahmed,Kiran Shahzadi,Sebu Aboma Temesgen,Ahmad Basharat,Xiang Chen,Ning Lin,Hasan Zulfiqar,Hao Lin,Yan-Ting Jin
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:277: 134146-134146 被引量:2
标识
DOI:10.1016/j.ijbiomac.2024.134146
摘要

Liquid-liquid phase separation (LLPS) regulates many biological processes including RNA metabolism, chromatin rearrangement, and signal transduction. Aberrant LLPS potentially leads to serious diseases. Therefore, the identification of the LLPS proteins is crucial. Traditionally, biochemistry-based methods for identifying LLPS proteins are costly, time-consuming, and laborious. In contrast, artificial intelligence-based approaches are fast and cost-effective and can be a better alternative to biochemistry-based methods. Previous research methods employed word2vec in conjunction with machine learning or deep learning algorithms. Although word2vec captures word semantics and relationships, it might not be effective in capturing features relevant to protein classification, like physicochemical properties, evolutionary relationships, or structural features. Additionally, other studies often focused on a limited set of features for model training, including planar π contact frequency, pi-pi, and β-pairing propensities. To overcome such shortcomings, this study first constructed a reliable dataset containing 1206 protein sequences, including 603 LLPS and 603 non-LLPS protein sequences. Then a computational model was proposed to efficiently identify the LLPS proteins by perceiving semantic information of protein sequences directly; using an ESM2-36 pre-trained model based on transformer architecture in conjunction with a convolutional neural network. The model could achieve an accuracy of 85.86 % and 89.26 %, respectively on training data and test data, surpassing the accuracy of previous studies. The performance demonstrates the potential of our computational methods as efficient alternatives for identifying LLPS proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草木完成签到,获得积分20
13秒前
19秒前
神医magical发布了新的文献求助10
22秒前
求助人员应助草木采纳,获得10
37秒前
求助人员应助草木采纳,获得10
37秒前
51秒前
王王碎冰冰应助神医magical采纳,获得10
53秒前
李健应助科研通管家采纳,获得10
1分钟前
MiaMia应助科研通管家采纳,获得10
1分钟前
1分钟前
Alisha完成签到,获得积分10
1分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
2分钟前
Whisper完成签到,获得积分10
2分钟前
子平完成签到 ,获得积分0
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
wave8013完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
丘比特应助神医magical采纳,获得10
4分钟前
ceeray23发布了新的文献求助20
4分钟前
烂漫的绿茶完成签到 ,获得积分10
4分钟前
打打应助orion采纳,获得10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
loii应助科研通管家采纳,获得200
5分钟前
王王碎冰冰应助ceeray23采纳,获得20
5分钟前
小铭同学完成签到,获得积分10
5分钟前
王王碎冰冰应助ceeray23采纳,获得20
5分钟前
5分钟前
orion发布了新的文献求助10
5分钟前
传奇3应助hhhhhh采纳,获得10
5分钟前
科研通AI6应助危机的尔琴采纳,获得10
6分钟前
6分钟前
微卫星不稳定完成签到 ,获得积分0
6分钟前
量子星尘发布了新的文献求助10
6分钟前
ceeray23发布了新的文献求助20
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628340
求助须知:如何正确求助?哪些是违规求助? 4716641
关于积分的说明 14964095
捐赠科研通 4786081
什么是DOI,文献DOI怎么找? 2555604
邀请新用户注册赠送积分活动 1516845
关于科研通互助平台的介绍 1477392