A protein pre-trained model-based approach for the identification of the liquid-liquid phase separation (LLPS) proteins

计算机科学 人工智能 鉴定(生物学) 机器学习 计算生物学 卷积神经网络 文字2vec 生物 嵌入 植物
作者
Zahoor Ahmed,Kiran Shahzadi,Sebu Aboma Temesgen,Ahmad Basharat,Xiang Chen,Ning Lin,Hasan Zulfiqar,Hao Lin,Yan-Ting Jin
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:277: 134146-134146 被引量:2
标识
DOI:10.1016/j.ijbiomac.2024.134146
摘要

Liquid-liquid phase separation (LLPS) regulates many biological processes including RNA metabolism, chromatin rearrangement, and signal transduction. Aberrant LLPS potentially leads to serious diseases. Therefore, the identification of the LLPS proteins is crucial. Traditionally, biochemistry-based methods for identifying LLPS proteins are costly, time-consuming, and laborious. In contrast, artificial intelligence-based approaches are fast and cost-effective and can be a better alternative to biochemistry-based methods. Previous research methods employed word2vec in conjunction with machine learning or deep learning algorithms. Although word2vec captures word semantics and relationships, it might not be effective in capturing features relevant to protein classification, like physicochemical properties, evolutionary relationships, or structural features. Additionally, other studies often focused on a limited set of features for model training, including planar π contact frequency, pi-pi, and β-pairing propensities. To overcome such shortcomings, this study first constructed a reliable dataset containing 1206 protein sequences, including 603 LLPS and 603 non-LLPS protein sequences. Then a computational model was proposed to efficiently identify the LLPS proteins by perceiving semantic information of protein sequences directly; using an ESM2-36 pre-trained model based on transformer architecture in conjunction with a convolutional neural network. The model could achieve an accuracy of 85.86 % and 89.26 %, respectively on training data and test data, surpassing the accuracy of previous studies. The performance demonstrates the potential of our computational methods as efficient alternatives for identifying LLPS proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LMN2rn完成签到,获得积分10
1秒前
1秒前
ding应助hay采纳,获得10
1秒前
姜小时发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
Hina完成签到,获得积分10
5秒前
7秒前
DrQyQ完成签到,获得积分10
7秒前
KKKZ发布了新的文献求助10
7秒前
7秒前
playpp完成签到,获得积分10
8秒前
8秒前
文静的海发布了新的文献求助10
8秒前
8秒前
土豆泥泥发布了新的文献求助10
9秒前
chem001完成签到,获得积分10
9秒前
xiaogui发布了新的文献求助10
9秒前
Tobin发布了新的文献求助10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
邹小静完成签到 ,获得积分20
13秒前
13秒前
13秒前
Aa123321完成签到,获得积分10
15秒前
15秒前
苗条青槐完成签到,获得积分10
16秒前
海绵宝宝发布了新的文献求助10
17秒前
luotao应助文静的海采纳,获得10
17秒前
123关注了科研通微信公众号
17秒前
NexusExplorer应助穆振家采纳,获得10
17秒前
CodeCraft应助超帅的斌斌采纳,获得10
17秒前
17秒前
19秒前
斯文败类应助高院士采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649821
求助须知:如何正确求助?哪些是违规求助? 4779250
关于积分的说明 15050421
捐赠科研通 4808796
什么是DOI,文献DOI怎么找? 2571853
邀请新用户注册赠送积分活动 1528134
关于科研通互助平台的介绍 1486877