清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A protein pre-trained model-based approach for the identification of the liquid-liquid phase separation (LLPS) proteins

计算机科学 人工智能 鉴定(生物学) 机器学习 计算生物学 卷积神经网络 文字2vec 生物 嵌入 植物
作者
Zahoor Ahmed,Kiran Shahzadi,Sebu Aboma Temesgen,Ahmad Basharat,Xiang Chen,Ning Lin,Hasan Zulfiqar,Hao Lin,Yan-Ting Jin
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:277: 134146-134146 被引量:2
标识
DOI:10.1016/j.ijbiomac.2024.134146
摘要

Liquid-liquid phase separation (LLPS) regulates many biological processes including RNA metabolism, chromatin rearrangement, and signal transduction. Aberrant LLPS potentially leads to serious diseases. Therefore, the identification of the LLPS proteins is crucial. Traditionally, biochemistry-based methods for identifying LLPS proteins are costly, time-consuming, and laborious. In contrast, artificial intelligence-based approaches are fast and cost-effective and can be a better alternative to biochemistry-based methods. Previous research methods employed word2vec in conjunction with machine learning or deep learning algorithms. Although word2vec captures word semantics and relationships, it might not be effective in capturing features relevant to protein classification, like physicochemical properties, evolutionary relationships, or structural features. Additionally, other studies often focused on a limited set of features for model training, including planar π contact frequency, pi-pi, and β-pairing propensities. To overcome such shortcomings, this study first constructed a reliable dataset containing 1206 protein sequences, including 603 LLPS and 603 non-LLPS protein sequences. Then a computational model was proposed to efficiently identify the LLPS proteins by perceiving semantic information of protein sequences directly; using an ESM2-36 pre-trained model based on transformer architecture in conjunction with a convolutional neural network. The model could achieve an accuracy of 85.86 % and 89.26 %, respectively on training data and test data, surpassing the accuracy of previous studies. The performance demonstrates the potential of our computational methods as efficient alternatives for identifying LLPS proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研豆包完成签到 ,获得积分10
39秒前
NexusExplorer应助xun采纳,获得10
41秒前
gleep1发布了新的文献求助10
43秒前
53秒前
gleep1完成签到,获得积分10
56秒前
xun发布了新的文献求助10
59秒前
1分钟前
隐形曼青应助xun采纳,获得10
1分钟前
一道光发布了新的文献求助10
1分钟前
wanci应助一道光采纳,获得30
1分钟前
kkkk完成签到 ,获得积分10
1分钟前
1分钟前
xun发布了新的文献求助10
1分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
xun完成签到,获得积分20
2分钟前
黄天完成签到 ,获得积分10
3分钟前
乐乐应助紫津采纳,获得10
3分钟前
酷酷海豚完成签到,获得积分10
3分钟前
紫津完成签到,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
852应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得40
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
5分钟前
健忘的溪灵完成签到 ,获得积分10
5分钟前
大医仁心完成签到 ,获得积分10
5分钟前
科研通AI6应助岚月采纳,获得30
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得30
8分钟前
岚月发布了新的文献求助30
8分钟前
岚月完成签到,获得积分10
8分钟前
糊涂的青烟完成签到 ,获得积分10
9分钟前
激动的似狮完成签到,获得积分10
9分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561563
求助须知:如何正确求助?哪些是违规求助? 4646662
关于积分的说明 14678727
捐赠科研通 4587989
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490549
关于科研通互助平台的介绍 1461566