A protein pre-trained model-based approach for the identification of the liquid-liquid phase separation (LLPS) proteins

液态液体 鉴定(生物学) 色谱法 化学 相(物质) 液相 生物系统 物理 生物 热力学 有机化学 植物
作者
Zahoor Ahmed,Kiran Shahzadi,Sebu Aboma Temesgen,Basharat Ahmad,Xiang Chen,Ning Lin,Hasan Zulfiqar,Hao Lin,Yan-Ting Jin
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:: 134146-134146
标识
DOI:10.1016/j.ijbiomac.2024.134146
摘要

Liquid-liquid phase separation (LLPS) regulates many biological processes including RNA metabolism, chromatin rearrangement, and signal transduction. Aberrant LLPS potentially leads to serious diseases. Therefore, the identification of the LLPS proteins is crucial. Traditionally, biochemistry-based methods for identifying LLPS proteins are costly, time-consuming, and laborious. In contrast, artificial intelligence-based approaches are fast and cost-effective and can be a better alternative to biochemistry-based methods. Previous research methods employed word2vec in conjunction with machine learning or deep learning algorithms. Although word2vec captures word semantics and relationships, it might not be effective in capturing features relevant to protein classification, like physicochemical properties, evolutionary relationships, or structural features. Additionally, other studies often focused on a limited set of features for model training, including planar π contact frequency, pi-pi, and β-pairing propensities. To overcome such shortcomings, this study first constructed a reliable dataset containing 1206 protein sequences, including 603 LLPS and 603 non-LLPS protein sequences. Then a computational model was proposed to efficiently identify the LLPS proteins by perceiving semantic information of protein sequences directly; using an ESM2-36 pre-trained model based on transformer architecture in conjunction with a convolutional neural network. The model could achieve an accuracy of 85.86 % and 89.26 %, respectively on training data and test data, surpassing the accuracy of previous studies. The performance demonstrates the potential of our computational methods as efficient alternatives for identifying LLPS proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐桐应助快乐小夏采纳,获得10
1秒前
Bystander完成签到 ,获得积分10
2秒前
冰糖完成签到,获得积分20
3秒前
彭于晏应助优美霸采纳,获得10
3秒前
烟花应助奋斗雁山采纳,获得10
4秒前
好好学习完成签到,获得积分10
5秒前
6秒前
6秒前
抹茶肥肠完成签到,获得积分10
8秒前
脑洞疼应助11采纳,获得10
8秒前
8秒前
10秒前
sheila完成签到,获得积分10
10秒前
10秒前
枫叶的虫子完成签到,获得积分10
11秒前
11秒前
Pooh发布了新的文献求助10
12秒前
12秒前
13秒前
深情安青应助莫非采纳,获得10
14秒前
向阳而生o完成签到,获得积分10
14秒前
xxx发布了新的文献求助10
14秒前
15秒前
llll发布了新的文献求助10
16秒前
yao发布了新的文献求助30
16秒前
17秒前
loski发布了新的文献求助10
17秒前
可爱的函函应助偷乐采纳,获得10
19秒前
清晾油完成签到,获得积分10
19秒前
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
坦率的匪应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
解语花应助科研通管家采纳,获得50
20秒前
czh应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028