A protein pre-trained model-based approach for the identification of the liquid-liquid phase separation (LLPS) proteins

液态液体 鉴定(生物学) 色谱法 化学 相(物质) 液相 生物系统 物理 生物 热力学 有机化学 植物
作者
Zahoor Ahmed,Kiran Shahzadi,Sebu Aboma Temesgen,Basharat Ahmad,Xiang Chen,Ning Lin,Hasan Zulfiqar,Hao Lin,Yan-Ting Jin
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:: 134146-134146
标识
DOI:10.1016/j.ijbiomac.2024.134146
摘要

Liquid-liquid phase separation (LLPS) regulates many biological processes including RNA metabolism, chromatin rearrangement, and signal transduction. Aberrant LLPS potentially leads to serious diseases. Therefore, the identification of the LLPS proteins is crucial. Traditionally, biochemistry-based methods for identifying LLPS proteins are costly, time-consuming, and laborious. In contrast, artificial intelligence-based approaches are fast and cost-effective and can be a better alternative to biochemistry-based methods. Previous research methods employed word2vec in conjunction with machine learning or deep learning algorithms. Although word2vec captures word semantics and relationships, it might not be effective in capturing features relevant to protein classification, like physicochemical properties, evolutionary relationships, or structural features. Additionally, other studies often focused on a limited set of features for model training, including planar π contact frequency, pi-pi, and β-pairing propensities. To overcome such shortcomings, this study first constructed a reliable dataset containing 1206 protein sequences, including 603 LLPS and 603 non-LLPS protein sequences. Then a computational model was proposed to efficiently identify the LLPS proteins by perceiving semantic information of protein sequences directly; using an ESM2-36 pre-trained model based on transformer architecture in conjunction with a convolutional neural network. The model could achieve an accuracy of 85.86 % and 89.26 %, respectively on training data and test data, surpassing the accuracy of previous studies. The performance demonstrates the potential of our computational methods as efficient alternatives for identifying LLPS proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gangster完成签到,获得积分10
刚刚
xhsz1111发布了新的文献求助10
刚刚
1秒前
ZZ完成签到 ,获得积分10
2秒前
西大喜完成签到,获得积分10
2秒前
holly发布了新的文献求助10
2秒前
叮咚jingle发布了新的文献求助10
2秒前
英俊的铭应助俭朴士晋采纳,获得10
2秒前
领导范儿应助jjlzy采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
XX完成签到,获得积分10
4秒前
zimu012发布了新的文献求助20
4秒前
科研通AI5应助药石无医采纳,获得10
4秒前
明月发布了新的文献求助10
5秒前
5秒前
陶兜兜发布了新的文献求助20
6秒前
6秒前
cyd2007cyd发布了新的文献求助10
6秒前
8秒前
彭于晏应助yan采纳,获得10
8秒前
桐桐应助曾经的翠霜采纳,获得10
9秒前
10秒前
丘比特应助青青草采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
lxiaok完成签到,获得积分10
12秒前
yys发布了新的文献求助10
12秒前
ry发布了新的文献求助30
13秒前
13秒前
我是老大应助lalaland采纳,获得10
14秒前
Metrix发布了新的文献求助10
15秒前
Ava应助cyd2007cyd采纳,获得10
15秒前
东东发布了新的文献求助10
15秒前
吨吨喝水完成签到,获得积分10
15秒前
16秒前
爆米花应助mengyijie2采纳,获得10
16秒前
瑞123456完成签到,获得积分10
16秒前
哈哈哈完成签到,获得积分10
16秒前
木木彡完成签到 ,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602661
求助须知:如何正确求助?哪些是违规求助? 4011768
关于积分的说明 12420364
捐赠科研通 3692108
什么是DOI,文献DOI怎么找? 2035470
邀请新用户注册赠送积分活动 1068575
科研通“疑难数据库(出版商)”最低求助积分说明 953144