Predicting cachexia in hepatocellular carcinoma patients: a nomogram based on MRI features and body composition

医学 列线图 恶病质 肝细胞癌 磁共振成像 回顾性队列研究 内科学 放射科 逻辑回归 接收机工作特性 癌症 肿瘤科 胃肠病学
作者
Xinxiang Li,Lei Zhu,Yufei Zhao,Yang Jiang,Hui Mao,Xin‐Gui Peng
出处
期刊:Acta Radiologica [SAGE]
被引量:1
标识
DOI:10.1177/02841851241261703
摘要

Background Approximately half of all patients with hepatocellular carcinoma (HCC) develop cachexia during the course of the disease. It is important to be able to predict which patients will develop cachexia at an early stage. Purpose To develop and validate a nomogram based on the magnetic resonance imaging (MRI) features of HCC and body composition for potentially predicting cachexia in patients with HCC. Material and Methods A retrospective two-center study recruited the pretreatment clinical and MRI data of 411 patients with HCC undergoing abdominal MRI. The data were divided into three cohorts for development, internal validation, and external validation. Patients were followed up for six months after the MRI scan to record each patient's weight to diagnose cachexia. Logistic regression analyses were performed to identify independent variables associated with cachexia in the development cohort used to build the nomogram. Results The multivariable analysis suggested that the MRI parameters of tumor size > 5 cm ( P = 0.001), intratumoral artery ( P = 0.004), skeletal muscle index ( P < 0.001), and subcutaneous fat area ( P = 0.004) were independent predictors of cachexia in patients with HCC. The nomogram derived from these parameters in predicting cachexia reached an area under receiver operating characteristic curve of 0.819, 0.783, and 0.814 in the development, and internal and external validation cohorts, respectively. Conclusion The proposed multivariable nomogram suggested good performance in predicting the risk of cachexia in HCC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨秋月完成签到,获得积分10
1秒前
小马甲应助mendy采纳,获得10
1秒前
温暖的思烟给温暖的思烟的求助进行了留言
2秒前
肖申克的舅叔完成签到,获得积分10
2秒前
RPG发布了新的文献求助10
3秒前
Vera完成签到 ,获得积分10
3秒前
科目三应助湘江雨采纳,获得10
3秒前
3秒前
5秒前
6秒前
7秒前
乐乐应助小橘采纳,获得10
7秒前
冷傲的咖啡豆完成签到,获得积分10
8秒前
谭你脑瓜崩完成签到,获得积分10
8秒前
8秒前
李爱国应助zhangxr采纳,获得10
9秒前
9秒前
9秒前
miao发布了新的文献求助10
11秒前
威武芝发布了新的文献求助10
11秒前
11秒前
罗向南发布了新的文献求助10
11秒前
李健的小迷弟应助至期采纳,获得10
12秒前
耀学菜菜发布了新的文献求助10
12秒前
甜橙子发布了新的文献求助10
12秒前
华仔应助震震采纳,获得10
13秒前
mendy完成签到,获得积分10
13秒前
13秒前
Vickey发布了新的文献求助10
13秒前
大模型应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得30
14秒前
Singularity应助科研通管家采纳,获得20
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
Guhuiying应助科研通管家采纳,获得10
14秒前
奇怪人类应助冷静的飞丹采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542