Predicting cachexia in hepatocellular carcinoma patients: a nomogram based on MRI features and body composition

医学 列线图 恶病质 肝细胞癌 磁共振成像 回顾性队列研究 内科学 放射科 逻辑回归 接收机工作特性 癌症 肿瘤科 胃肠病学
作者
Xinxiang Li,Lei Zhu,Yufei Zhao,Yang Jiang,Hui Mao,Xin‐Gui Peng
出处
期刊:Acta Radiologica [SAGE]
被引量:1
标识
DOI:10.1177/02841851241261703
摘要

Background Approximately half of all patients with hepatocellular carcinoma (HCC) develop cachexia during the course of the disease. It is important to be able to predict which patients will develop cachexia at an early stage. Purpose To develop and validate a nomogram based on the magnetic resonance imaging (MRI) features of HCC and body composition for potentially predicting cachexia in patients with HCC. Material and Methods A retrospective two-center study recruited the pretreatment clinical and MRI data of 411 patients with HCC undergoing abdominal MRI. The data were divided into three cohorts for development, internal validation, and external validation. Patients were followed up for six months after the MRI scan to record each patient's weight to diagnose cachexia. Logistic regression analyses were performed to identify independent variables associated with cachexia in the development cohort used to build the nomogram. Results The multivariable analysis suggested that the MRI parameters of tumor size > 5 cm ( P = 0.001), intratumoral artery ( P = 0.004), skeletal muscle index ( P < 0.001), and subcutaneous fat area ( P = 0.004) were independent predictors of cachexia in patients with HCC. The nomogram derived from these parameters in predicting cachexia reached an area under receiver operating characteristic curve of 0.819, 0.783, and 0.814 in the development, and internal and external validation cohorts, respectively. Conclusion The proposed multivariable nomogram suggested good performance in predicting the risk of cachexia in HCC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cyy完成签到,获得积分20
刚刚
orixero应助小庄采纳,获得10
1秒前
2秒前
侦察兵发布了新的文献求助10
2秒前
司徒元瑶完成签到 ,获得积分10
2秒前
梓榆发布了新的文献求助10
2秒前
2秒前
sweetbearm应助通~采纳,获得10
2秒前
斯文败类应助成就映秋采纳,获得10
3秒前
123456完成签到,获得积分10
3秒前
3秒前
moonlin完成签到 ,获得积分10
3秒前
4秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
6秒前
wanci应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
思源应助蟹黄堡不打折采纳,获得10
6秒前
Lily应助科研通管家采纳,获得40
6秒前
敬老院N号应助科研通管家采纳,获得30
6秒前
zzzq应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
皮皮完成签到 ,获得积分10
6秒前
sallltyyy发布了新的文献求助10
6秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
QPP完成签到,获得积分10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
喜悦中道应助科研通管家采纳,获得10
6秒前
wzxxxx发布了新的文献求助10
7秒前
冬瓜炖排骨完成签到,获得积分10
7秒前
6666发布了新的文献求助10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794