Flexible Hand Claw Picking Method for Citrus-Picking Robot Based on Target Fruit Recognition

人工智能 计算机视觉 计算机科学 生物 生态学
作者
Xu Xiao,Yaonan Wang,Bing Zhou,Yiming Jiang
出处
期刊:Agriculture [MDPI AG]
卷期号:14 (8): 1227-1227 被引量:1
标识
DOI:10.3390/agriculture14081227
摘要

In order to meet the demand of the intelligent and efficient picking of fresh citrus fruit in a natural environment, a flexible and independent picking method of fresh citrus fruit based on picking pattern recognition was proposed. The convolutional attention (CA) mechanism was added in the YOLOv7 network model. This makes the model pay more attention to the citrus fruit region, reduces the interference of some redundant information in the background and feature maps, effectively improves the recognition accuracy of the YOLOv7 network model, and reduces the detection error of the hand region. According to the physical parameters of the citrus fruit and stem, an end-effector suitable for picking citrus fruit was designed, which effectively reduced the damage during the picking of citrus fruit. According to the actual distribution of citrus fruits in the natural environment, a citrus fruit-picking task planning model was established, so that the adaptability of the flexible handle can make up for the inaccuracy of the deep learning method to a certain extent when the end-effector picks fruits independently. Finally, on the basis of integrating the key components of the picking robot, a production test was carried out in a standard citrus orchard. The experimental results show that the success rate of the citrus-picking robot arm is 87.15%, and the success rate of picking in the natural field environment is 82.4%, which is better than the success rate of 80% of the market picking robot. In the picking experiment, the main reason for the unsuccessful positioning of citrus fruits is that the position of citrus fruits is beyond the picking range of the end-effector, and the motion parameters of the robot arm joint will produce errors, affecting the motion accuracy of the robot arm, leading to the failure of picking. This study can provide technical support for the exploration and application of the intelligent fruit-picking mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光秋莲完成签到,获得积分10
刚刚
明月逐人归完成签到,获得积分10
1秒前
elfff完成签到,获得积分10
3秒前
眼睛大的半青完成签到,获得积分10
3秒前
柠橙发布了新的文献求助30
4秒前
夏侯觅风完成签到,获得积分20
4秒前
深情安青应助liushoujia采纳,获得10
6秒前
随机来的名字完成签到,获得积分10
7秒前
北河二完成签到,获得积分10
7秒前
8秒前
漫凤完成签到,获得积分10
9秒前
10秒前
稻粱之上完成签到,获得积分20
10秒前
11秒前
Chen完成签到 ,获得积分10
12秒前
希望天下0贩的0应助洇澧采纳,获得10
13秒前
13秒前
13秒前
Ava应助随机来的名字采纳,获得10
14秒前
yaloos发布了新的文献求助30
14秒前
爆米花应助留胡子的问芙采纳,获得10
14秒前
14秒前
zz发布了新的文献求助30
14秒前
chenchen完成签到 ,获得积分10
15秒前
Jasper应助超甜大西瓜采纳,获得10
15秒前
友好醉波完成签到,获得积分10
16秒前
深情安青应助朴素亦绿采纳,获得10
16秒前
果实发布了新的文献求助10
17秒前
yiyiyi发布了新的文献求助10
17秒前
18秒前
19秒前
霸气的惜天完成签到,获得积分10
20秒前
fangfang发布了新的文献求助10
20秒前
20秒前
JIE完成签到,获得积分10
21秒前
JIE完成签到 ,获得积分10
23秒前
喜悦静枫发布了新的文献求助10
23秒前
猪猪发布了新的文献求助10
24秒前
25秒前
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152244
求助须知:如何正确求助?哪些是违规求助? 2803512
关于积分的说明 7854215
捐赠科研通 2461077
什么是DOI,文献DOI怎么找? 1310159
科研通“疑难数据库(出版商)”最低求助积分说明 629126
版权声明 601765