已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Real-Time pH Sensor in Bacterial Microenvironments Using Liquid Crystal Core–Shell Microspheres

化学 微球 芯(光纤) 化学工程 壳体(结构) 纳米技术 光学 复合材料 物理 材料科学 工程类
作者
Yaoshuang Xie,Yuxuan Li,Haifeng Lin,Xiaorui Wang,Wenjun Liao,Zeyang Liu,Ling Lin
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (28): 11472-11478
标识
DOI:10.1021/acs.analchem.4c02040
摘要

It is well-known that the bacterial microenvironment imposes restrictions on the growth and behavior of bacteria. The localized monitoring of microenvironmental factors is appreciated when consulting bacterial adaptation and behavior in the presence of chemical or mechanical stimuli. Herein, we developed a novel liquid crystal (LC) biosensor in a microsphere configuration for real-time 3D monitoring of the bacteria microenvironment, which was implemented by a microfluidic chip. As a proof of concept, a LC gel (LC-Gel) microsphere biosensor was prepared and employed in the localized pH changes of bacteria by observing the configuration change of LC under polarized optical microscopy. Briefly, the microsphere biosensor was constructed in core-shell configuration, wherein the core contained LCE7 (a nematic LC) doped with 4-pentylbiphenyl-4'-carboxylic acid (PBA), and the shell encapsulated the bacteria. The protonation of carboxyl functional groups of the PBA induced a change in charge density on the surface of LCE7 and the orientation of E7 molecules, resulting in the transitions of the LC nucleus from axial to bipolar. The developed LC-Gel microspheres pH sensor exhibited its dominant performance on localized pH real-time sensing with a resolution of 0.1. An intriguing observation from the prepared pH biosensor was that the diverse bacteria impelled distinct acidifying or alkalizing effects. Overall, the facile LC-Gel microsphere biosensor not only provides a versatile tool for label-free, localized pH monitoring but also opens avenues for investigating the effects of chemical and mechanical stimuli on cellular metabolism within bacterial microenvironments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静靖荷应助安然采纳,获得10
2秒前
4秒前
科目三应助gq0401采纳,获得10
6秒前
6秒前
加菲丰丰应助sheldon采纳,获得30
8秒前
猪猪hero应助安然采纳,获得10
8秒前
8秒前
爱学习发布了新的文献求助10
9秒前
NexusExplorer应助辉hui采纳,获得10
10秒前
12秒前
tong发布了新的文献求助10
12秒前
完美世界应助窝窝窝书采纳,获得10
13秒前
852应助安然采纳,获得10
13秒前
14秒前
16秒前
yfhhahaha发布了新的文献求助10
17秒前
17秒前
华仔应助安然采纳,获得10
18秒前
Akim应助WANG.采纳,获得10
18秒前
小马甲应助tong采纳,获得10
18秒前
20秒前
Qinghua发布了新的文献求助10
20秒前
22秒前
Akim应助慕容雅柏采纳,获得10
24秒前
li完成签到 ,获得积分10
24秒前
不如吃茶去完成签到,获得积分10
26秒前
不怕物理完成签到,获得积分20
26秒前
26秒前
26秒前
26秒前
桐桐应助yfhhahaha采纳,获得10
27秒前
28秒前
101关注了科研通微信公众号
28秒前
大模型应助diee采纳,获得10
29秒前
Ava应助肝肝好采纳,获得10
29秒前
31秒前
烤地瓜发布了新的文献求助10
32秒前
36秒前
36秒前
吴军发布了新的文献求助10
37秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073176
关于积分的说明 9129919
捐赠科研通 2764838
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009