亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Structural Topic and Sentiment-Discourse Model for Text Analysis

情绪分析 计算机科学 主题模型 自然语言处理 语言学 哲学
作者
Li Chen,Shawn Mankad
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:71 (7): 5767-5787 被引量:3
标识
DOI:10.1287/mnsc.2022.00261
摘要

We consider the common setting where one observes a large number of opinionated text documents and related covariates, such as the text of online reviews along with the date of the review and the author demographic information. In this setting it can be of interest to understand how the covariates determine the text composition, as well as the prevalence, sentiment, and/or discourse of various discussion themes. Yet, most topic modeling methods in the machine learning literature are designed to summarize the text for the purpose of exploratory analysis and not to perform this type of formal statistical inference. Further, topic modeling methods generally do not try to estimate the sentiment or discourse of discussion along separate topics that can be critical in business applications (e.g., for summarizing service or product quality). We develop a topic model called the structural topic and sentiment-discourse (STS) model that introduces a new document-level latent variable that captures the sentiment and/or discourse (termed as “sentiment-discourse”) for each topic, which modulates the word frequency within a topic. These latent topic sentiment-discourse variables are controlled by document-level covariates to allow for experimental control and regression analysis. We also introduce new computational methods to resolve scalability issues that have forced previous models to restrict to a small number of categorical covariates. We benchmark the STS model on three real-world data sets from surveys, blogs, and Yelp restaurant reviews around the COVID-19 pandemic. Our model recovers meaningful results including rich insights about how COVID-19 affects online reviews, demonstrating that the STS model can be useful for regression analysis with text data in addition to topic modeling’s traditional use of descriptive analysis. This paper was accepted by Anindya Ghose, information systems. Supplemental Material: The online appendices and data files are available at https://doi.org/10.1287/mnsc.2022.00261 . An updated version of the R package implementing the STS model is available at https://CRAN.R-project.org/package=sts .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐发布了新的文献求助10
1秒前
川川完成签到 ,获得积分10
18秒前
33秒前
50秒前
读书的时候完成签到,获得积分20
1分钟前
1分钟前
星辰大海应助zdseu采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
zdseu发布了新的文献求助10
1分钟前
wave8013完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
友好的乐曲完成签到,获得积分10
1分钟前
汪汪淬冰冰完成签到,获得积分10
1分钟前
zdseu完成签到,获得积分10
1分钟前
思源应助撒旦asd采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SimonShaw完成签到 ,获得积分10
1分钟前
由道罡完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
wuyin发布了新的文献求助10
2分钟前
hb完成签到,获得积分0
2分钟前
3分钟前
撒旦asd发布了新的文献求助10
3分钟前
3分钟前
3分钟前
xiawanren00完成签到,获得积分10
3分钟前
3分钟前
川荣李奈完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
Moonpie完成签到 ,获得积分10
4分钟前
科目三应助小羊同学采纳,获得10
4分钟前
和怡完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739632
求助须知:如何正确求助?哪些是违规求助? 5387944
关于积分的说明 15339804
捐赠科研通 4882032
什么是DOI,文献DOI怎么找? 2624108
邀请新用户注册赠送积分活动 1572821
关于科研通互助平台的介绍 1529612