亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Structural Topic and Sentiment-Discourse Model for Text Analysis

情绪分析 计算机科学 主题模型 自然语言处理 语言学 哲学
作者
Li Chen,Shawn Mankad
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:71 (7): 5767-5787 被引量:3
标识
DOI:10.1287/mnsc.2022.00261
摘要

We consider the common setting where one observes a large number of opinionated text documents and related covariates, such as the text of online reviews along with the date of the review and the author demographic information. In this setting it can be of interest to understand how the covariates determine the text composition, as well as the prevalence, sentiment, and/or discourse of various discussion themes. Yet, most topic modeling methods in the machine learning literature are designed to summarize the text for the purpose of exploratory analysis and not to perform this type of formal statistical inference. Further, topic modeling methods generally do not try to estimate the sentiment or discourse of discussion along separate topics that can be critical in business applications (e.g., for summarizing service or product quality). We develop a topic model called the structural topic and sentiment-discourse (STS) model that introduces a new document-level latent variable that captures the sentiment and/or discourse (termed as “sentiment-discourse”) for each topic, which modulates the word frequency within a topic. These latent topic sentiment-discourse variables are controlled by document-level covariates to allow for experimental control and regression analysis. We also introduce new computational methods to resolve scalability issues that have forced previous models to restrict to a small number of categorical covariates. We benchmark the STS model on three real-world data sets from surveys, blogs, and Yelp restaurant reviews around the COVID-19 pandemic. Our model recovers meaningful results including rich insights about how COVID-19 affects online reviews, demonstrating that the STS model can be useful for regression analysis with text data in addition to topic modeling’s traditional use of descriptive analysis. This paper was accepted by Anindya Ghose, information systems. Supplemental Material: The online appendices and data files are available at https://doi.org/10.1287/mnsc.2022.00261 . An updated version of the R package implementing the STS model is available at https://CRAN.R-project.org/package=sts .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
beiwei完成签到 ,获得积分10
16秒前
重要的智宸应助标致金毛采纳,获得50
25秒前
26秒前
31秒前
43秒前
Jayzie完成签到 ,获得积分10
53秒前
神医magical完成签到,获得积分20
54秒前
1分钟前
1分钟前
牛牛的马发布了新的文献求助10
1分钟前
标致金毛完成签到,获得积分10
1分钟前
自由芝发布了新的文献求助10
1分钟前
Yxy2021完成签到 ,获得积分10
1分钟前
天天天晴完成签到 ,获得积分10
1分钟前
1分钟前
mingjing完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
赘婿应助朴素寄文采纳,获得10
1分钟前
1分钟前
自由芝完成签到,获得积分10
1分钟前
研友_VZG7GZ应助klandcy采纳,获得10
1分钟前
谢谢谢发布了新的文献求助10
1分钟前
嘿嘿应助breeze采纳,获得30
1分钟前
1分钟前
klandcy发布了新的文献求助10
1分钟前
星之所向完成签到 ,获得积分10
1分钟前
1分钟前
shentaii完成签到,获得积分10
2分钟前
重要的智宸应助谢谢谢采纳,获得10
2分钟前
重要的智宸应助谢谢谢采纳,获得10
2分钟前
小天才狗蛋完成签到,获得积分10
2分钟前
sensen完成签到,获得积分10
2分钟前
小蘑菇应助sensen采纳,获得10
2分钟前
2分钟前
JL完成签到 ,获得积分10
2分钟前
sensen发布了新的文献求助10
2分钟前
脑洞疼应助ocseek采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568181
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701886
捐赠科研通 4594521
什么是DOI,文献DOI怎么找? 2521010
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696