清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Structural Topic and Sentiment-Discourse Model for Text Analysis

情绪分析 计算机科学 主题模型 自然语言处理 语言学 哲学
作者
Li Chen,Shawn Mankad
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.00261
摘要

We consider the common setting where one observes a large number of opinionated text documents and related covariates, such as the text of online reviews along with the date of the review and the author demographic information. In this setting it can be of interest to understand how the covariates determine the text composition, as well as the prevalence, sentiment, and/or discourse of various discussion themes. Yet, most topic modeling methods in the machine learning literature are designed to summarize the text for the purpose of exploratory analysis and not to perform this type of formal statistical inference. Further, topic modeling methods generally do not try to estimate the sentiment or discourse of discussion along separate topics that can be critical in business applications (e.g., for summarizing service or product quality). We develop a topic model called the structural topic and sentiment-discourse (STS) model that introduces a new document-level latent variable that captures the sentiment and/or discourse (termed as “sentiment-discourse”) for each topic, which modulates the word frequency within a topic. These latent topic sentiment-discourse variables are controlled by document-level covariates to allow for experimental control and regression analysis. We also introduce new computational methods to resolve scalability issues that have forced previous models to restrict to a small number of categorical covariates. We benchmark the STS model on three real-world data sets from surveys, blogs, and Yelp restaurant reviews around the COVID-19 pandemic. Our model recovers meaningful results including rich insights about how COVID-19 affects online reviews, demonstrating that the STS model can be useful for regression analysis with text data in addition to topic modeling’s traditional use of descriptive analysis. This paper was accepted by Anindya Ghose, information systems. Supplemental Material: The online appendices and data files are available at https://doi.org/10.1287/mnsc.2022.00261 . An updated version of the R package implementing the STS model is available at https://CRAN.R-project.org/package=sts .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
福尔摩曦完成签到,获得积分10
5秒前
9秒前
大意的晓亦完成签到 ,获得积分10
26秒前
斯文可仁完成签到,获得积分10
34秒前
专注冬雪完成签到,获得积分10
42秒前
科研狗完成签到 ,获得积分10
53秒前
贝贝完成签到,获得积分0
58秒前
1分钟前
长卿123完成签到,获得积分10
1分钟前
去去去去发布了新的文献求助10
1分钟前
yshj完成签到 ,获得积分0
1分钟前
SCH_zhu完成签到,获得积分10
1分钟前
上官若男应助Sanche采纳,获得10
1分钟前
1分钟前
格林发布了新的文献求助10
1分钟前
迅速千愁完成签到 ,获得积分10
1分钟前
大水完成签到 ,获得积分10
1分钟前
格林完成签到,获得积分10
1分钟前
1分钟前
Sanche发布了新的文献求助10
1分钟前
diguohu完成签到,获得积分10
1分钟前
无花果应助Wu采纳,获得10
1分钟前
无花果应助asdhfasdk采纳,获得10
1分钟前
梦夜孤星完成签到 ,获得积分10
2分钟前
Axs完成签到,获得积分10
2分钟前
酸奶球完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
白白嫩嫩完成签到,获得积分10
2分钟前
Sigma完成签到 ,获得积分10
2分钟前
堇笙vv完成签到,获得积分0
3分钟前
xiaochuan925完成签到 ,获得积分10
3分钟前
yuntong完成签到 ,获得积分10
3分钟前
小强完成签到 ,获得积分10
3分钟前
jlwang完成签到,获得积分10
3分钟前
CC完成签到,获得积分0
4分钟前
oaoalaa完成签到 ,获得积分10
4分钟前
DayFu完成签到 ,获得积分10
4分钟前
cai白白完成签到,获得积分0
4分钟前
Tong完成签到,获得积分0
5分钟前
旧雨新知完成签到 ,获得积分10
5分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142823
求助须知:如何正确求助?哪些是违规求助? 2793662
关于积分的说明 7807147
捐赠科研通 2449971
什么是DOI,文献DOI怎么找? 1303563
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350