A Structural Topic and Sentiment-Discourse Model for Text Analysis

情绪分析 计算机科学 主题模型 自然语言处理 语言学 哲学
作者
Li Chen,Shawn Mankad
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:71 (7): 5767-5787 被引量:3
标识
DOI:10.1287/mnsc.2022.00261
摘要

We consider the common setting where one observes a large number of opinionated text documents and related covariates, such as the text of online reviews along with the date of the review and the author demographic information. In this setting it can be of interest to understand how the covariates determine the text composition, as well as the prevalence, sentiment, and/or discourse of various discussion themes. Yet, most topic modeling methods in the machine learning literature are designed to summarize the text for the purpose of exploratory analysis and not to perform this type of formal statistical inference. Further, topic modeling methods generally do not try to estimate the sentiment or discourse of discussion along separate topics that can be critical in business applications (e.g., for summarizing service or product quality). We develop a topic model called the structural topic and sentiment-discourse (STS) model that introduces a new document-level latent variable that captures the sentiment and/or discourse (termed as “sentiment-discourse”) for each topic, which modulates the word frequency within a topic. These latent topic sentiment-discourse variables are controlled by document-level covariates to allow for experimental control and regression analysis. We also introduce new computational methods to resolve scalability issues that have forced previous models to restrict to a small number of categorical covariates. We benchmark the STS model on three real-world data sets from surveys, blogs, and Yelp restaurant reviews around the COVID-19 pandemic. Our model recovers meaningful results including rich insights about how COVID-19 affects online reviews, demonstrating that the STS model can be useful for regression analysis with text data in addition to topic modeling’s traditional use of descriptive analysis. This paper was accepted by Anindya Ghose, information systems. Supplemental Material: The online appendices and data files are available at https://doi.org/10.1287/mnsc.2022.00261 . An updated version of the R package implementing the STS model is available at https://CRAN.R-project.org/package=sts .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助嗷嗷嗷采纳,获得10
1秒前
Xu完成签到,获得积分10
1秒前
啦啦啦发布了新的文献求助10
1秒前
木土完成签到 ,获得积分10
2秒前
JamesPei应助小鲤鱼本鱼采纳,获得10
2秒前
Criminology34应助GUOGUO采纳,获得10
2秒前
北张发布了新的文献求助10
2秒前
SciGPT应助无限魔镜采纳,获得10
3秒前
3秒前
阔达海雪完成签到,获得积分10
3秒前
阔达的小海豚完成签到,获得积分10
4秒前
stiger应助sinsinsin采纳,获得10
4秒前
4秒前
神烦狗完成签到 ,获得积分10
5秒前
清见的心完成签到,获得积分10
5秒前
小兔子乖乖完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
王为云发布了新的文献求助10
7秒前
情怀应助悠悠夏日长采纳,获得10
8秒前
平淡过客完成签到,获得积分10
8秒前
Owen应助卤化氢采纳,获得10
8秒前
情怀应助好运藏在善良里采纳,获得10
8秒前
8秒前
冬日发布了新的文献求助10
10秒前
insane发布了新的文献求助10
10秒前
45321完成签到,获得积分10
11秒前
胖头鱼完成签到,获得积分20
11秒前
11秒前
英勇雅琴完成签到 ,获得积分10
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
嗷嗷嗷完成签到,获得积分10
13秒前
14秒前
归尘发布了新的文献求助10
14秒前
乌迪尔应助积极毛巾采纳,获得10
15秒前
华仔应助win采纳,获得10
15秒前
insane完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693462
求助须知:如何正确求助?哪些是违规求助? 5093130
关于积分的说明 15211816
捐赠科研通 4850452
什么是DOI,文献DOI怎么找? 2601739
邀请新用户注册赠送积分活动 1553549
关于科研通互助平台的介绍 1511540