A Structural Topic and Sentiment-Discourse Model for Text Analysis

情绪分析 计算机科学 主题模型 自然语言处理 语言学 哲学
作者
Li Chen,Shawn Mankad
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.00261
摘要

We consider the common setting where one observes a large number of opinionated text documents and related covariates, such as the text of online reviews along with the date of the review and the author demographic information. In this setting it can be of interest to understand how the covariates determine the text composition, as well as the prevalence, sentiment, and/or discourse of various discussion themes. Yet, most topic modeling methods in the machine learning literature are designed to summarize the text for the purpose of exploratory analysis and not to perform this type of formal statistical inference. Further, topic modeling methods generally do not try to estimate the sentiment or discourse of discussion along separate topics that can be critical in business applications (e.g., for summarizing service or product quality). We develop a topic model called the structural topic and sentiment-discourse (STS) model that introduces a new document-level latent variable that captures the sentiment and/or discourse (termed as “sentiment-discourse”) for each topic, which modulates the word frequency within a topic. These latent topic sentiment-discourse variables are controlled by document-level covariates to allow for experimental control and regression analysis. We also introduce new computational methods to resolve scalability issues that have forced previous models to restrict to a small number of categorical covariates. We benchmark the STS model on three real-world data sets from surveys, blogs, and Yelp restaurant reviews around the COVID-19 pandemic. Our model recovers meaningful results including rich insights about how COVID-19 affects online reviews, demonstrating that the STS model can be useful for regression analysis with text data in addition to topic modeling’s traditional use of descriptive analysis. This paper was accepted by Anindya Ghose, information systems. Supplemental Material: The online appendices and data files are available at https://doi.org/10.1287/mnsc.2022.00261 . An updated version of the R package implementing the STS model is available at https://CRAN.R-project.org/package=sts .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cx完成签到,获得积分10
1秒前
小章完成签到,获得积分10
2秒前
2秒前
丁莞完成签到,获得积分10
2秒前
鸭子完成签到,获得积分10
2秒前
wzytu3发布了新的文献求助10
4秒前
董小天天完成签到,获得积分10
4秒前
斯文败类应助Luoller采纳,获得10
4秒前
我不困完成签到,获得积分10
6秒前
6秒前
老衲完成签到,获得积分0
7秒前
慕青应助imi采纳,获得10
7秒前
沐言发布了新的文献求助10
8秒前
满意代萱完成签到 ,获得积分10
8秒前
zpj完成签到 ,获得积分10
8秒前
wzytu3完成签到,获得积分10
10秒前
完美冷安完成签到,获得积分10
11秒前
13秒前
madison发布了新的文献求助200
14秒前
科研通AI2S应助imi采纳,获得10
15秒前
阿士大夫完成签到,获得积分10
15秒前
MZ完成签到,获得积分10
15秒前
奋斗若风完成签到,获得积分10
16秒前
Rhan完成签到,获得积分20
19秒前
nihao完成签到,获得积分10
20秒前
自然的凝冬应助林沐采纳,获得10
21秒前
暴躁的菠萝完成签到 ,获得积分10
21秒前
苦西迪发布了新的文献求助10
24秒前
欢喜念双完成签到,获得积分10
24秒前
tianhongyu完成签到,获得积分10
25秒前
zt1812431172完成签到 ,获得积分10
25秒前
FashionBoy应助Rhan采纳,获得10
26秒前
LG完成签到,获得积分10
26秒前
matingting完成签到,获得积分10
27秒前
xiaofenzi完成签到,获得积分10
27秒前
苦雨完成签到,获得积分10
28秒前
bao完成签到,获得积分10
28秒前
领导范儿应助苦西迪采纳,获得10
30秒前
奥斯卡完成签到,获得积分0
30秒前
。z发布了新的文献求助10
31秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068355
求助须知:如何正确求助?哪些是违规求助? 2722240
关于积分的说明 7476332
捐赠科研通 2369299
什么是DOI,文献DOI怎么找? 1256310
科研通“疑难数据库(出版商)”最低求助积分说明 609538
版权声明 596835