Microstructure evolution and twinning-induced plasticity (TWIP) in hcp rare-earth high- and medium-entropy alloys (HEAs and MEAs) due to tensile deformation

Twip公司 晶体孪晶 材料科学 微观结构 可塑性 高熵合金 极限抗拉强度 稀土 变形(气象学) 冶金 变形机理 复合材料
作者
Laura Rosenkranz,Qianqian Lan,Milan Heczko,Ashton J. Egan,Michael J. Mills,M. Feuerbacher,Uwe Glatzel
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:136 (2) 被引量:1
标识
DOI:10.1063/5.0207181
摘要

The microstructure evolution due to the tensile deformation of the equiatomic quinary high-entropy alloy Ho-Dy-Y-Gd-Tb (HEA-Fb) is assessed. HEA-Fb has extraordinarily similar alloying elements. It is one of the few hexagonal-close-packed single-phase representatives of HEA. HEA-Fb is compared to the equiatomic quaternary medium-entropy alloy (MEA) Ho-Dy-Gd-Tb with no Y (4-Y). For a hexagonal HEA, in contrast to the cubic HEA, little information on plastic deformation and underlying mechanisms is available. A detailed study using electron microscopy-based multi-scale characterization (SEM, S/TEM, and STEM-EDS) explains significant differences between the ductile behavior of the quaternary MEA 4-Y and the brittle behavior of the quinary HEA-Fb at room temperature. Twinning during plastic deformation is decisive for ductility, which challenges the widely discussed high-entropy effect on the mechanical behavior of the HEA. For the quaternary MEA 4-Y, a twinning-induced plasticity effect is found. In the latter, oxidized twins are present in the undeformed state. In both alloys, the twin orientations are indexed as [2¯201], while the matrices have the perpendicular [112¯0] orientation. Additionally, the analysis of twin structures confirms the importance of twin boundaries as obstacles for dislocations and stacking fault mobilities. The results are discussed in the context of the existing knowledge gaps in the field of hexagonal MEAs and HEAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MET1发布了新的文献求助10
刚刚
TingtingGZ完成签到,获得积分10
4秒前
lhx发布了新的文献求助10
4秒前
6秒前
tanzzz应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
劲秉应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得30
7秒前
迟大猫应助科研通管家采纳,获得10
7秒前
田様应助月宸采纳,获得10
7秒前
迟大猫应助科研通管家采纳,获得10
7秒前
迟大猫应助科研通管家采纳,获得10
7秒前
劲秉应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
迟大猫应助科研通管家采纳,获得10
7秒前
7秒前
tanzzz应助科研通管家采纳,获得10
8秒前
迟大猫应助科研通管家采纳,获得10
8秒前
leeeeee完成签到,获得积分20
8秒前
劲秉应助科研通管家采纳,获得60
8秒前
迟大猫应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
8秒前
所所应助科研通管家采纳,获得10
8秒前
迟大猫应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
迟大猫应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
迟大猫应助科研通管家采纳,获得10
8秒前
科研通AI5应助TanFT采纳,获得10
10秒前
10秒前
lhx完成签到,获得积分10
11秒前
eee完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673662
求助须知:如何正确求助?哪些是违规求助? 3229164
关于积分的说明 9784494
捐赠科研通 2939740
什么是DOI,文献DOI怎么找? 1611281
邀请新用户注册赠送积分活动 760896
科研通“疑难数据库(出版商)”最低求助积分说明 736326