Moment-Consistent Contrastive CycleGAN for Cross-Domain Pancreatic Image Segmentation

图像分割 人工智能 图像(数学) 分割 领域(数学分析) 力矩(物理) 计算机科学 计算机视觉 模式识别(心理学) 数学 物理 数学分析 经典力学
作者
Zhongyu Chen,Yun Bian,Erwei Shen,Ligang Fan,Weifang Zhu,Fei Shi,Chengwei Shao,Xinjian Chen,Dehui Xiang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tmi.2024.3447071
摘要

CT and MR are currently the most common imaging techniques for pancreatic cancer diagnosis. Accurate segmentation of the pancreas in CT and MR images can provide significant help in the diagnosis and treatment of pancreatic cancer. Traditional supervised segmentation methods require a large number of labeled CT and MR training data, which is usually time-consuming and laborious. Meanwhile, due to domain shift, traditional segmentation networks are difficult to be deployed on different imaging modality datasets. Cross-domain segmentation can utilize labeled source domain data to assist unlabeled target domains in solving the above problems. In this paper, a cross-domain pancreas segmentation algorithm is proposed based on Moment-Consistent Contrastive Cycle Generative Adversarial Networks (MC-CCycleGAN). MC-CCycleGAN is a style transfer network, in which the encoder of its generator is used to extract features from real images and style transfer images, constrain feature extraction through a contrastive loss, and fully extract structural features of input images during style transfer while eliminate redundant style features. The multi-order central moments of the pancreas are proposed to describe its anatomy in high dimensions and a contrastive loss is also proposed to constrain the moment consistency, so as to maintain consistency of the pancreatic structure and shape before and after style transfer. Multi-teacher knowledge distillation framework is proposed to transfer the knowledge from multiple teachers to a single student, so as to improve the robustness and performance of the student network. The experimental results have demonstrated the superiority of our framework over state-of-the-art domain adaptation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
下次见发布了新的文献求助10
1秒前
1秒前
Yyy发布了新的文献求助10
1秒前
半圆亻发布了新的文献求助10
2秒前
爆米花应助liyiliyi117采纳,获得10
2秒前
heure发布了新的文献求助10
3秒前
苏洋完成签到,获得积分20
3秒前
dovis发布了新的文献求助10
3秒前
4秒前
充电宝应助墨墨叻采纳,获得10
4秒前
LL发布了新的文献求助30
5秒前
echo发布了新的文献求助10
5秒前
5秒前
滕擎发布了新的文献求助10
5秒前
accpeted发布了新的文献求助10
5秒前
li完成签到,获得积分10
5秒前
萧水白应助隐形以晴采纳,获得10
6秒前
半圆亻完成签到,获得积分10
6秒前
Xxxxr完成签到,获得积分10
6秒前
苏洋发布了新的文献求助10
6秒前
7秒前
王玉完成签到,获得积分10
7秒前
FashionBoy应助刘二狗采纳,获得10
8秒前
海关监管环境完成签到,获得积分10
9秒前
kopp完成签到,获得积分10
10秒前
Bubble发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
下次见完成签到,获得积分10
12秒前
12秒前
派派完成签到,获得积分10
13秒前
饼饼完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
sunny30发布了新的文献求助10
16秒前
shtatbf应助Santiago采纳,获得10
16秒前
yatou5651应助小新采纳,获得30
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951800
求助须知:如何正确求助?哪些是违规求助? 3497233
关于积分的说明 11086336
捐赠科研通 3227767
什么是DOI,文献DOI怎么找? 1784520
邀请新用户注册赠送积分活动 868692
科研通“疑难数据库(出版商)”最低求助积分说明 801163