Moment-Consistent Contrastive CycleGAN for Cross-Domain Pancreatic Image Segmentation

图像分割 人工智能 图像(数学) 分割 领域(数学分析) 力矩(物理) 计算机科学 计算机视觉 模式识别(心理学) 数学 物理 数学分析 经典力学
作者
Zhongyu Chen,Yun Bian,Erwei Shen,Ligang Fan,Weifang Zhu,Fei Shi,Chengwei Shao,Xinjian Chen,Dehui Xiang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3447071
摘要

CT and MR are currently the most common imaging techniques for pancreatic cancer diagnosis. Accurate segmentation of the pancreas in CT and MR images can provide significant help in the diagnosis and treatment of pancreatic cancer. Traditional supervised segmentation methods require a large number of labeled CT and MR training data, which is usually time-consuming and laborious. Meanwhile, due to domain shift, traditional segmentation networks are difficult to be deployed on different imaging modality datasets. Cross-domain segmentation can utilize labeled source domain data to assist unlabeled target domains in solving the above problems. In this paper, a cross-domain pancreas segmentation algorithm is proposed based on Moment-Consistent Contrastive Cycle Generative Adversarial Networks (MC-CCycleGAN). MC-CCycleGAN is a style transfer network, in which the encoder of its generator is used to extract features from real images and style transfer images, constrain feature extraction through a contrastive loss, and fully extract structural features of input images during style transfer while eliminate redundant style features. The multi-order central moments of the pancreas are proposed to describe its anatomy in high dimensions and a contrastive loss is also proposed to constrain the moment consistency, so as to maintain consistency of the pancreatic structure and shape before and after style transfer. Multi-teacher knowledge distillation framework is proposed to transfer the knowledge from multiple teachers to a single student, so as to improve the robustness and performance of the student network. The experimental results have demonstrated the superiority of our framework over state-of-the-art domain adaptation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助无奈梦岚采纳,获得10
1秒前
2秒前
tanliulong完成签到 ,获得积分10
5秒前
ss13l完成签到,获得积分10
5秒前
LYQ完成签到,获得积分10
6秒前
缥缈鸭子发布了新的文献求助10
7秒前
研友_VZG7GZ应助机智的友容采纳,获得10
9秒前
10秒前
打打应助致简采纳,获得10
10秒前
任小萱发布了新的文献求助10
10秒前
12秒前
周周发布了新的文献求助10
15秒前
辛勤奇迹发布了新的文献求助10
18秒前
调皮的千万完成签到,获得积分10
19秒前
gaga完成签到,获得积分10
20秒前
guozizi发布了新的文献求助10
20秒前
20秒前
叶子完成签到,获得积分20
20秒前
求助123完成签到,获得积分10
22秒前
含蓄的问寒完成签到,获得积分10
22秒前
24秒前
科研通AI2S应助LYDZ1采纳,获得10
24秒前
笑笑发布了新的文献求助10
24秒前
28秒前
npknpk发布了新的文献求助20
29秒前
开放的洋葱应助杰杰子采纳,获得10
32秒前
双夏完成签到 ,获得积分10
33秒前
Nes发布了新的文献求助10
33秒前
万能图书馆应助Elvira采纳,获得10
34秒前
shuhaha完成签到,获得积分10
35秒前
36秒前
淡然平灵应助徐来福采纳,获得10
37秒前
37秒前
明明发布了新的文献求助10
40秒前
阿柴_Htao完成签到,获得积分10
41秒前
王根基完成签到,获得积分10
43秒前
liqing发布了新的文献求助10
43秒前
44秒前
44秒前
justsayit完成签到 ,获得积分10
47秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349498
求助须知:如何正确求助?哪些是违规求助? 2975547
关于积分的说明 8669764
捐赠科研通 2656354
什么是DOI,文献DOI怎么找? 1454554
科研通“疑难数据库(出版商)”最低求助积分说明 673381
邀请新用户注册赠送积分活动 663821