Moment-Consistent Contrastive CycleGAN for Cross-Domain Pancreatic Image Segmentation

图像分割 人工智能 图像(数学) 分割 领域(数学分析) 力矩(物理) 计算机科学 计算机视觉 模式识别(心理学) 数学 物理 数学分析 经典力学
作者
Zhongyu Chen,Yun Bian,Erwei Shen,Ligang Fan,Weifang Zhu,Fei Shi,Chengwei Shao,Xinjian Chen,Dehui Xiang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tmi.2024.3447071
摘要

CT and MR are currently the most common imaging techniques for pancreatic cancer diagnosis. Accurate segmentation of the pancreas in CT and MR images can provide significant help in the diagnosis and treatment of pancreatic cancer. Traditional supervised segmentation methods require a large number of labeled CT and MR training data, which is usually time-consuming and laborious. Meanwhile, due to domain shift, traditional segmentation networks are difficult to be deployed on different imaging modality datasets. Cross-domain segmentation can utilize labeled source domain data to assist unlabeled target domains in solving the above problems. In this paper, a cross-domain pancreas segmentation algorithm is proposed based on Moment-Consistent Contrastive Cycle Generative Adversarial Networks (MC-CCycleGAN). MC-CCycleGAN is a style transfer network, in which the encoder of its generator is used to extract features from real images and style transfer images, constrain feature extraction through a contrastive loss, and fully extract structural features of input images during style transfer while eliminate redundant style features. The multi-order central moments of the pancreas are proposed to describe its anatomy in high dimensions and a contrastive loss is also proposed to constrain the moment consistency, so as to maintain consistency of the pancreatic structure and shape before and after style transfer. Multi-teacher knowledge distillation framework is proposed to transfer the knowledge from multiple teachers to a single student, so as to improve the robustness and performance of the student network. The experimental results have demonstrated the superiority of our framework over state-of-the-art domain adaptation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Hello应助里予采纳,获得20
2秒前
时尚的青丝完成签到,获得积分10
2秒前
史萌发布了新的文献求助10
2秒前
田様应助阜睿采纳,获得10
2秒前
高乾飞完成签到,获得积分10
2秒前
3秒前
wjy321发布了新的文献求助10
3秒前
kk发布了新的文献求助10
3秒前
Chara_kara发布了新的文献求助10
3秒前
鳌小饭完成签到 ,获得积分10
3秒前
00发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
小红花完成签到 ,获得积分20
5秒前
5秒前
rkay完成签到,获得积分10
6秒前
dd36发布了新的文献求助10
6秒前
zhujh完成签到,获得积分10
7秒前
lifengxia发布了新的文献求助10
7秒前
讨厌桃子发布了新的文献求助10
7秒前
CIXI完成签到,获得积分10
7秒前
无花果应助TiAmo采纳,获得10
7秒前
bbbjddd发布了新的文献求助10
8秒前
Kelly发布了新的文献求助10
8秒前
哇samm完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
loseyourself发布了新的文献求助20
13秒前
13秒前
YG完成签到,获得积分10
13秒前
13秒前
深情安青应助美丽的靖雁采纳,获得10
13秒前
14秒前
冷艳水壶完成签到,获得积分10
15秒前
研友_VZG7GZ应助隐形从露采纳,获得10
15秒前
啦啦啦完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424683
求助须知:如何正确求助?哪些是违规求助? 4539082
关于积分的说明 14165073
捐赠科研通 4456131
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483