Moment-Consistent Contrastive CycleGAN for Cross-Domain Pancreatic Image Segmentation

图像分割 人工智能 图像(数学) 分割 领域(数学分析) 力矩(物理) 计算机科学 计算机视觉 模式识别(心理学) 数学 物理 数学分析 经典力学
作者
Zhongyu Chen,Yun Bian,Erwei Shen,Ligang Fan,Weifang Zhu,Fei Shi,Chengwei Shao,Xinjian Chen,Dehui Xiang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (1): 422-435 被引量:5
标识
DOI:10.1109/tmi.2024.3447071
摘要

CT and MR are currently the most common imaging techniques for pancreatic cancer diagnosis. Accurate segmentation of the pancreas in CT and MR images can provide significant help in the diagnosis and treatment of pancreatic cancer. Traditional supervised segmentation methods require a large number of labeled CT and MR training data, which is usually time-consuming and laborious. Meanwhile, due to domain shift, traditional segmentation networks are difficult to be deployed on different imaging modality datasets. Cross-domain segmentation can utilize labeled source domain data to assist unlabeled target domains in solving the above problems. In this paper, a cross-domain pancreas segmentation algorithm is proposed based on Moment-Consistent Contrastive Cycle Generative Adversarial Networks (MC-CCycleGAN). MC-CCycleGAN is a style transfer network, in which the encoder of its generator is used to extract features from real images and style transfer images, constrain feature extraction through a contrastive loss, and fully extract structural features of input images during style transfer while eliminate redundant style features. The multi-order central moments of the pancreas are proposed to describe its anatomy in high dimensions and a contrastive loss is also proposed to constrain the moment consistency, so as to maintain consistency of the pancreatic structure and shape before and after style transfer. Multi-teacher knowledge distillation framework is proposed to transfer the knowledge from multiple teachers to a single student, so as to improve the robustness and performance of the student network. The experimental results have demonstrated the superiority of our framework over state-of-the-art domain adaptation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助yawong采纳,获得10
1秒前
panzhongjie完成签到,获得积分10
1秒前
1秒前
scikiller完成签到,获得积分20
1秒前
逆光完成签到 ,获得积分10
2秒前
碧蓝鸡翅发布了新的文献求助10
2秒前
小白完成签到,获得积分20
3秒前
3秒前
3秒前
和花花完成签到,获得积分10
3秒前
3秒前
3秒前
LXS发布了新的文献求助30
3秒前
SciGPT应助蛋卷采纳,获得10
4秒前
活泼蜡烛完成签到,获得积分10
4秒前
Xt发布了新的文献求助10
4秒前
激流勇进发布了新的文献求助10
4秒前
酷波er应助zjf采纳,获得10
5秒前
auggy发布了新的文献求助10
5秒前
5秒前
6秒前
miko完成签到 ,获得积分10
7秒前
7秒前
FiFi完成签到 ,获得积分10
7秒前
几几完成签到,获得积分10
7秒前
8秒前
大可发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
Ava应助飞呀采纳,获得30
9秒前
9秒前
大模型应助道莲采纳,获得50
9秒前
王一帆发布了新的文献求助10
10秒前
甜美的沅完成签到 ,获得积分10
11秒前
ding应助且放青山远采纳,获得10
11秒前
丘比特应助QJQ采纳,获得10
11秒前
11秒前
逢亮发布了新的文献求助10
12秒前
淡定发布了新的文献求助10
13秒前
科目三应助沈格采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743112
求助须知:如何正确求助?哪些是违规求助? 5412747
关于积分的说明 15346869
捐赠科研通 4884076
什么是DOI,文献DOI怎么找? 2625553
邀请新用户注册赠送积分活动 1574422
关于科研通互助平台的介绍 1531297