Moment-Consistent Contrastive CycleGAN for Cross-Domain Pancreatic Image Segmentation

图像分割 人工智能 图像(数学) 分割 领域(数学分析) 力矩(物理) 计算机科学 计算机视觉 模式识别(心理学) 数学 物理 数学分析 经典力学
作者
Zhongyu Chen,Yun Bian,Erwei Shen,Ligang Fan,Weifang Zhu,Fei Shi,Chengwei Shao,Xinjian Chen,Dehui Xiang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tmi.2024.3447071
摘要

CT and MR are currently the most common imaging techniques for pancreatic cancer diagnosis. Accurate segmentation of the pancreas in CT and MR images can provide significant help in the diagnosis and treatment of pancreatic cancer. Traditional supervised segmentation methods require a large number of labeled CT and MR training data, which is usually time-consuming and laborious. Meanwhile, due to domain shift, traditional segmentation networks are difficult to be deployed on different imaging modality datasets. Cross-domain segmentation can utilize labeled source domain data to assist unlabeled target domains in solving the above problems. In this paper, a cross-domain pancreas segmentation algorithm is proposed based on Moment-Consistent Contrastive Cycle Generative Adversarial Networks (MC-CCycleGAN). MC-CCycleGAN is a style transfer network, in which the encoder of its generator is used to extract features from real images and style transfer images, constrain feature extraction through a contrastive loss, and fully extract structural features of input images during style transfer while eliminate redundant style features. The multi-order central moments of the pancreas are proposed to describe its anatomy in high dimensions and a contrastive loss is also proposed to constrain the moment consistency, so as to maintain consistency of the pancreatic structure and shape before and after style transfer. Multi-teacher knowledge distillation framework is proposed to transfer the knowledge from multiple teachers to a single student, so as to improve the robustness and performance of the student network. The experimental results have demonstrated the superiority of our framework over state-of-the-art domain adaptation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助尊敬乌龟采纳,获得10
1秒前
福福yu完成签到,获得积分10
1秒前
1秒前
Owen应助大狒狒采纳,获得10
2秒前
DS发布了新的文献求助200
4秒前
贪玩绮南完成签到 ,获得积分10
4秒前
充电宝应助上杉绘梨衣采纳,获得10
4秒前
bkagyin应助shenlee采纳,获得10
4秒前
背后翠梅发布了新的文献求助10
5秒前
小沐牧呀发布了新的文献求助10
5秒前
紫虚门下小肥羊完成签到 ,获得积分10
5秒前
大个应助jml采纳,获得10
7秒前
咖可乐完成签到,获得积分10
9秒前
泡泡糖完成签到,获得积分10
10秒前
浮游应助风清扬采纳,获得30
10秒前
12秒前
12秒前
所所应助背后翠梅采纳,获得10
12秒前
zcl应助Tree_QD采纳,获得30
13秒前
14秒前
美丽电源应助owoow采纳,获得10
15秒前
乐乐应助STP顶峰相见采纳,获得10
15秒前
18秒前
Amy发布了新的文献求助10
19秒前
CHENJIRU发布了新的文献求助10
19秒前
20秒前
冰阔落完成签到 ,获得积分10
21秒前
21秒前
Emma发布了新的文献求助10
22秒前
Passskd发布了新的文献求助10
24秒前
科研通AI6应助13508104971采纳,获得10
24秒前
25秒前
华仔应助小王同学采纳,获得10
26秒前
Rainielove0215完成签到,获得积分0
27秒前
27秒前
Moon完成签到,获得积分10
29秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1500
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123780
求助须知:如何正确求助?哪些是违规求助? 4328150
关于积分的说明 13486520
捐赠科研通 4162505
什么是DOI,文献DOI怎么找? 2281552
邀请新用户注册赠送积分活动 1282938
关于科研通互助平台的介绍 1222044