Moment-Consistent Contrastive CycleGAN for Cross-Domain Pancreatic Image Segmentation

图像分割 人工智能 图像(数学) 分割 领域(数学分析) 力矩(物理) 计算机科学 计算机视觉 模式识别(心理学) 数学 物理 数学分析 经典力学
作者
Zhongyu Chen,Yun Bian,Erwei Shen,Ligang Fan,Weifang Zhu,Fei Shi,Chengwei Shao,Xinjian Chen,Dehui Xiang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (1): 422-435 被引量:5
标识
DOI:10.1109/tmi.2024.3447071
摘要

CT and MR are currently the most common imaging techniques for pancreatic cancer diagnosis. Accurate segmentation of the pancreas in CT and MR images can provide significant help in the diagnosis and treatment of pancreatic cancer. Traditional supervised segmentation methods require a large number of labeled CT and MR training data, which is usually time-consuming and laborious. Meanwhile, due to domain shift, traditional segmentation networks are difficult to be deployed on different imaging modality datasets. Cross-domain segmentation can utilize labeled source domain data to assist unlabeled target domains in solving the above problems. In this paper, a cross-domain pancreas segmentation algorithm is proposed based on Moment-Consistent Contrastive Cycle Generative Adversarial Networks (MC-CCycleGAN). MC-CCycleGAN is a style transfer network, in which the encoder of its generator is used to extract features from real images and style transfer images, constrain feature extraction through a contrastive loss, and fully extract structural features of input images during style transfer while eliminate redundant style features. The multi-order central moments of the pancreas are proposed to describe its anatomy in high dimensions and a contrastive loss is also proposed to constrain the moment consistency, so as to maintain consistency of the pancreatic structure and shape before and after style transfer. Multi-teacher knowledge distillation framework is proposed to transfer the knowledge from multiple teachers to a single student, so as to improve the robustness and performance of the student network. The experimental results have demonstrated the superiority of our framework over state-of-the-art domain adaptation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助F冯采纳,获得10
刚刚
科研通AI6应助健壮小懒猪采纳,获得10
1秒前
SBQHY完成签到,获得积分10
1秒前
苗苗发布了新的文献求助10
1秒前
Hello应助luo采纳,获得10
1秒前
致行完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
怕孤独的访云完成签到 ,获得积分10
2秒前
2秒前
ZsJJkk完成签到,获得积分10
2秒前
2秒前
天阳完成签到,获得积分10
2秒前
果冻橙发布了新的文献求助10
2秒前
完美世界应助可爱的弘文采纳,获得10
3秒前
苏苏完成签到,获得积分10
3秒前
3秒前
房LY完成签到,获得积分10
3秒前
3秒前
3秒前
QQ完成签到,获得积分10
3秒前
4秒前
赘婿应助典雅的俊驰采纳,获得10
4秒前
liu完成签到,获得积分10
4秒前
。。。完成签到,获得积分10
4秒前
4秒前
天马行空完成签到,获得积分10
4秒前
5秒前
channy完成签到,获得积分10
5秒前
科研通AI6应助芝士奶盖采纳,获得10
5秒前
cc完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
端庄荔枝发布了新的文献求助10
8秒前
8秒前
陈惠卿88完成签到,获得积分10
8秒前
8秒前
9秒前
忧郁道之发布了新的文献求助10
9秒前
冀1完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271