Moment-Consistent Contrastive CycleGAN for Cross-Domain Pancreatic Image Segmentation

图像分割 人工智能 图像(数学) 分割 领域(数学分析) 力矩(物理) 计算机科学 计算机视觉 模式识别(心理学) 数学 物理 数学分析 经典力学
作者
Zhongyu Chen,Yun Bian,Erwei Shen,Ligang Fan,Weifang Zhu,Fei Shi,Chengwei Shao,Xinjian Chen,Dehui Xiang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (1): 422-435 被引量:5
标识
DOI:10.1109/tmi.2024.3447071
摘要

CT and MR are currently the most common imaging techniques for pancreatic cancer diagnosis. Accurate segmentation of the pancreas in CT and MR images can provide significant help in the diagnosis and treatment of pancreatic cancer. Traditional supervised segmentation methods require a large number of labeled CT and MR training data, which is usually time-consuming and laborious. Meanwhile, due to domain shift, traditional segmentation networks are difficult to be deployed on different imaging modality datasets. Cross-domain segmentation can utilize labeled source domain data to assist unlabeled target domains in solving the above problems. In this paper, a cross-domain pancreas segmentation algorithm is proposed based on Moment-Consistent Contrastive Cycle Generative Adversarial Networks (MC-CCycleGAN). MC-CCycleGAN is a style transfer network, in which the encoder of its generator is used to extract features from real images and style transfer images, constrain feature extraction through a contrastive loss, and fully extract structural features of input images during style transfer while eliminate redundant style features. The multi-order central moments of the pancreas are proposed to describe its anatomy in high dimensions and a contrastive loss is also proposed to constrain the moment consistency, so as to maintain consistency of the pancreatic structure and shape before and after style transfer. Multi-teacher knowledge distillation framework is proposed to transfer the knowledge from multiple teachers to a single student, so as to improve the robustness and performance of the student network. The experimental results have demonstrated the superiority of our framework over state-of-the-art domain adaptation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lilichen_发布了新的文献求助10
刚刚
所所应助jiang采纳,获得10
刚刚
刚刚
川荣李奈完成签到 ,获得积分10
刚刚
郭嘉彬发布了新的文献求助10
刚刚
cheryl发布了新的文献求助10
刚刚
1秒前
令人秃头完成签到 ,获得积分10
1秒前
顾矜应助顺心的友灵采纳,获得10
1秒前
务实大神完成签到,获得积分10
1秒前
李健应助SUNYAOSUNYAO采纳,获得10
1秒前
现代秋白完成签到 ,获得积分10
2秒前
2秒前
Ethan发布了新的文献求助10
2秒前
大模型应助我不李姐采纳,获得10
2秒前
小欣发布了新的文献求助10
2秒前
营养小杨发布了新的文献求助500
2秒前
3秒前
springwell完成签到,获得积分10
3秒前
傲娇千亦完成签到 ,获得积分10
3秒前
光轮2000发布了新的文献求助10
4秒前
Owen应助SunGuangkai采纳,获得10
5秒前
Hqing完成签到 ,获得积分10
5秒前
5秒前
6秒前
沉静的奇异果完成签到 ,获得积分10
6秒前
JamesPei应助catch采纳,获得10
7秒前
今后应助QQQ采纳,获得20
8秒前
SONG完成签到,获得积分10
8秒前
科研通AI6应助hh采纳,获得10
8秒前
箴言完成签到,获得积分20
8秒前
血小板发布了新的文献求助10
8秒前
lifuyi291完成签到,获得积分10
9秒前
9秒前
刘钱美子完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
SONG发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545644
求助须知:如何正确求助?哪些是违规求助? 4631652
关于积分的说明 14621627
捐赠科研通 4573276
什么是DOI,文献DOI怎么找? 2507440
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455451