A model for electroencephalogram emotion recognition: Residual block-gated recurrent unit with attention mechanism

计算机科学 人工智能 卷积神经网络 残余物 脑电图 模式识别(心理学) 稳健性(进化) 语音识别 深度学习 机器学习 算法 心理学 生物化学 化学 精神科 基因
作者
Yujie Wang,Zhang Xiu,Xin Zhang,Baiwei Sun,Bingyue Xu
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (8)
标识
DOI:10.1063/5.0221637
摘要

Electroencephalogram (EEG) signals, serving as a tool to objectively reflect real emotional states, hold a crucial position in emotion recognition research. In recent years, deep learning approaches have been widely applied in emotion recognition research, and the results have demonstrated their effectiveness in this field. Nevertheless, the challenge remains in selecting effective features, ensuring their retention as the network depth increases, and preventing the loss of crucial information. In order to address the issues, a novel emotion recognition method is proposed, which is named Res-CRANN. In the proposed method, the raw EEG signals are transformed into four dimensional spatial-frequency-temporal information, which can provide a more enriched and complex feature representation. First, the residual block is incorporated into the convolutional layers to extract spatial and frequency domain information. Subsequently, gated recurrent unit (GRU) is employed to capture temporal information from the convolutional neural network outputs. Following GRU, attention mechanisms are applied to enhance awareness of key information and diminish interference from irrelevant details. By reducing attention to irrelevant or noisy temporal steps, it ultimately improves the accuracy and robustness of the classification process. The Res-CRANN method exhibits excellent performance on the DEAP dataset, with an accuracy of 96.63% for valence and 96.87% for arousal, confirming its effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
丘比特应助miluren采纳,获得10
3秒前
8秒前
初小花完成签到,获得积分10
9秒前
11秒前
研友_nPPaVn发布了新的文献求助30
14秒前
萧水白应助小锡采纳,获得10
17秒前
yesss完成签到,获得积分10
17秒前
18秒前
隐形曼青应助Zsc采纳,获得10
19秒前
福林古斯完成签到 ,获得积分10
19秒前
miyavi发布了新的文献求助30
22秒前
22秒前
23秒前
领导范儿应助且歌且行采纳,获得10
26秒前
依力帕发布了新的文献求助10
28秒前
luckytuantuan完成签到 ,获得积分20
29秒前
29秒前
七七雨后发布了新的文献求助30
29秒前
29秒前
不爱吃西葫芦完成签到 ,获得积分10
31秒前
酷波er应助!!采纳,获得10
31秒前
32秒前
英俊的铭应助茶茶采纳,获得10
32秒前
顺利的毛衣完成签到 ,获得积分10
32秒前
升升升呀应助lalala123采纳,获得10
34秒前
Jin发布了新的文献求助10
35秒前
yyyy发布了新的文献求助10
35秒前
realmar完成签到,获得积分10
35秒前
36秒前
小困发布了新的文献求助10
36秒前
手机应助kaka34采纳,获得10
38秒前
shyの煜完成签到 ,获得积分10
39秒前
Lucas应助称心的问安采纳,获得10
39秒前
jinxin完成签到,获得积分10
39秒前
天天快乐应助称心的问安采纳,获得10
40秒前
无花果应助瘦瘦采纳,获得10
41秒前
七七雨后完成签到,获得积分10
43秒前
44秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267675
求助须知:如何正确求助?哪些是违规求助? 2907110
关于积分的说明 8340681
捐赠科研通 2577828
什么是DOI,文献DOI怎么找? 1401227
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 634008