材料科学
超级电容器
气凝胶
纤维
电容
电极
纳米技术
电解质
化学工程
储能
复合材料
功率(物理)
化学
物理
物理化学
量子力学
工程类
作者
Qingqing Tang,Yang Zhang,Xiaolin Zhu,Yuting Wang,Zengming Man,Chao Yang,Jianhong Xu,Guan Wu,Wangyang Lü
标识
DOI:10.1002/adfm.202410005
摘要
Abstract Architected fibrous electrodes with hierarchically porous, stable interface coupling, and good biocompatibility that accelerates charge transfer and storage are vital to realize high‐performance fiber‐shaped supercapacitors (FSCs) toward wearable and implantable systems. Here, a hierarchically porous and hetero‐structured black phosphorus/Ti 3 C 2 T X MXene aerogel (A‐BP/Ti 3 C 2 T X ) fiber based on electrostatic self‐assembly and microfluidic spinning methods is reported. The as‐prepared A‐BP/Ti 3 C 2 T X fiber with interconnected porous networks, high conductive skeleton, and substantial interfacial building exhibits a low diffusion energy barrier of H + , the large adsorption energy of H + , fast interfacial electron conduction, and excellent structural stability by density functional theory calculations and in situ/ex situ characteristics. As a result, the A‐BP/Ti 3 C 2 T X fiber presents boosted electrolyte ion diffusion kinetic and capacitance of 369 F g −1 . Furthermore, the asymmetric FSCs deliver good energy density of 6.39 Wh kg −1 and long cycling stability of 20 000 cycles, thereby successfully powering wearable devices. More importantly, by combining the hydrogel adhesion agent, the implantable FSCs that can firmly adhere to the tissues show significant bending stability (88.52% capacitance retention after 5000 cycles), impressively adhesive capability in tissue fluid or wetted tissue surface, and considerably no cell toxic. The work offers a broad path for designing structural fiber electrodes for implantable energy technology and wearable applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI