Habitat-based CT radiomics enhances the ability to predict spread through air spaces in stage T1 invasive lung adenocarcinoma

接收机工作特性 人工智能 阿达布思 计算机科学 腺癌 模式识别(心理学) 阶段(地层学) Boosting(机器学习) 聚类分析 无线电技术 试验装置 曼惠特尼U检验 特征选择 医学 机器学习 数学 统计 支持向量机 地质学 内科学 癌症 古生物学
作者
Xiuhua Peng,Hongxing Zhao,Shiyong Wu,Dan Jia,Miaomiao Hu,Biping Guo,Jinliang Hu,Pengliang Xu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1436189
摘要

Introduction Spread through air spaces (STAS) represents a novel invasive pattern in lung adenocarcinoma (LUAD) and is a risk factor for poor prognosis in stage T1 LUAD. This study aims to develop and validate a CT habitat imaging analysis model for predicting STAS in stage T1 invasive LUAD. Methods We retrospectively analyzed 217 patients with preoperative stage T1 invasive LUAD (115 STAS-positive and 102 STAS-negative cases, including 151 in the train set and 66 in the test set). Semi-automatic segmentation was performed on the regions of interest (ROIs) in all CT images, with an automatic 3mm expansion around the tumor, considering the intratumoral and peritumoral 3mm area. This area was divided into three sub-regions via K-means clustering, and 1197 radiomic features were extracted from each sub-region and the overall combined region. After dimension reduction through the Mann-Whitney U test, Pearson correlation analysis, and least absolute shrinkage and selection operator(LASSO), the best features for each sub-region and overall were selected. Models were then built using the selected radiomic features through the Adaptive Boosting (AdaBoost) and Multilayer Perceptron (MLP) classifiers. Four different models were established based on different sub-regions and the overall features. The performance of these models was evaluated through receiver operating characteristic curves (AUC) under the DeLong test, calibration curves via the Hosmer-Lemeshow test, and decision curve analysis to assess the performance of these features. Results In this study, we evaluated the predictive performance of AdaBoost and MLP classifiers on rad feature models across various subregions and the overall dataset. In the test set, the AdaBoost classifier achieved a maximum AUC of 0.871 in Habitat 3, whereas the MLP classifier demonstrated slightly superior performance with an AUC of 0.879. Both classifiers exhibited high efficiency in habitat 3, with the MLP algorithm showing enhanced model performance. Conclusions CT habitat imaging analysis for the preoperative prediction of STAS in stage T1 invasive LUAD shows satisfactory diagnostic performance, with the habitat3 model exhibiting the highest efficacy, reflecting tumor heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助30040采纳,获得10
1秒前
1秒前
某某应助追逐123采纳,获得10
1秒前
Lilili完成签到,获得积分10
2秒前
2秒前
2秒前
jawa完成签到 ,获得积分10
2秒前
3秒前
曾金福完成签到,获得积分20
3秒前
3秒前
superllq完成签到,获得积分10
3秒前
背后无极发布了新的文献求助10
4秒前
翁雁丝发布了新的文献求助10
4秒前
4秒前
深情安青应助活力的映易采纳,获得10
4秒前
lulu完成签到,获得积分10
4秒前
4秒前
一一应助你的女孩TT采纳,获得10
5秒前
洛水伊南发布了新的文献求助10
5秒前
6秒前
Crystal发布了新的文献求助10
6秒前
Fiona发布了新的文献求助10
6秒前
赘婿应助谷歌采纳,获得10
7秒前
7秒前
lemon完成签到,获得积分10
7秒前
科研通AI5应助王阳洋采纳,获得150
7秒前
wyc发布了新的文献求助10
8秒前
9秒前
10秒前
soapffz完成签到,获得积分10
10秒前
10秒前
水知寒完成签到,获得积分10
10秒前
11秒前
Aeon完成签到,获得积分10
11秒前
科研通AI5应助Vicky采纳,获得10
11秒前
30040发布了新的文献求助10
13秒前
13秒前
13秒前
qgyj发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
A Handbook of Process Tracing Methods : 2nd Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3698962
求助须知:如何正确求助?哪些是违规求助? 3249864
关于积分的说明 9865623
捐赠科研通 2961634
什么是DOI,文献DOI怎么找? 1624118
邀请新用户注册赠送积分活动 769190
科研通“疑难数据库(出版商)”最低求助积分说明 742097