Hybrid Swin-CSRNet: A Novel and Efficient Fish Counting Network in Aquaculture

水产养殖 渔业 环境科学 生物
作者
Jintao Liu,Alfredo Tolón Becerra,Fernando Bienvenido,Xinting Yang,Kaijie Zhu,Chao Zhou
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:12 (10): 1823-1823
标识
DOI:10.3390/jmse12101823
摘要

Real-time estimation of fish biomass plays a crucial role in real-world fishery production, as it helps formulate feeding strategies and other management decisions. In this paper, a dense fish counting network called Swin-CSRNet is proposed. Specifically, the VGG16 layer in the front-end is replaced with the Swin transformer to extract image features more efficiently. Additionally, a squeeze-and-excitation (SE) module is introduced to enhance feature representation by dynamically adjusting the importance of each channel through “squeeze” and “excitation”, making the extracted features more focused and effective. Finally, a multi-scale fusion (MSF) module is added after the back-end to fully utilize the multi-scale feature information, enhancing the model’s ability to capture multi-scale details. The experiment demonstrates that Swin-CSRNet achieved excellent results with MAE, RMSE, and MAPE and a correlation coefficient R2 of 11.22, 15.32, 5.18%, and 0.954, respectively. Meanwhile, compared to the original network, the parameter size and computational complexity of Swin-CSRNet were reduced by 70.17% and 79.05%, respectively. Therefore, the proposed method not only counts the number of fish with higher speed and accuracy but also contributes to advancing the automation of aquaculture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻沅发布了新的文献求助10
1秒前
火羽白然完成签到 ,获得积分10
1秒前
冰西瓜完成签到 ,获得积分10
2秒前
季忆发布了新的文献求助10
2秒前
2秒前
cc发布了新的文献求助10
3秒前
Hello应助糊涂的小伙采纳,获得10
3秒前
甜甜的冷霜完成签到,获得积分10
3秒前
hkxfg发布了新的文献求助10
4秒前
谭谨川完成签到,获得积分10
4秒前
李爱国应助云中渊采纳,获得10
5秒前
5秒前
LT发布了新的文献求助10
6秒前
6秒前
高兴藏花发布了新的文献求助10
6秒前
8秒前
Allen完成签到,获得积分10
9秒前
9秒前
楪i完成签到,获得积分10
9秒前
值得完成签到,获得积分10
11秒前
11秒前
远山完成签到,获得积分10
12秒前
星星发布了新的文献求助10
12秒前
nanhe698发布了新的文献求助20
12秒前
阳光无声完成签到,获得积分10
12秒前
金色年华发布了新的文献求助10
12秒前
shatang完成签到,获得积分10
13秒前
14秒前
Owen应助一天八杯水采纳,获得10
14秒前
所所应助静静子采纳,获得10
15秒前
所所应助jy采纳,获得10
15秒前
hkxfg完成签到,获得积分10
15秒前
duo完成签到,获得积分10
16秒前
17秒前
spurs17发布了新的文献求助10
17秒前
17秒前
善学以致用应助BaekHyun采纳,获得10
17秒前
18秒前
18秒前
nanhe698完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808