Hybrid Swin-CSRNet: A Novel and Efficient Fish Counting Network in Aquaculture

水产养殖 渔业 环境科学 生物
作者
Jintao Liu,Alfredo Tolón Becerra,Fernando Bienvenido,Xinting Yang,Kaijie Zhu,Chao Zhou
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:12 (10): 1823-1823
标识
DOI:10.3390/jmse12101823
摘要

Real-time estimation of fish biomass plays a crucial role in real-world fishery production, as it helps formulate feeding strategies and other management decisions. In this paper, a dense fish counting network called Swin-CSRNet is proposed. Specifically, the VGG16 layer in the front-end is replaced with the Swin transformer to extract image features more efficiently. Additionally, a squeeze-and-excitation (SE) module is introduced to enhance feature representation by dynamically adjusting the importance of each channel through “squeeze” and “excitation”, making the extracted features more focused and effective. Finally, a multi-scale fusion (MSF) module is added after the back-end to fully utilize the multi-scale feature information, enhancing the model’s ability to capture multi-scale details. The experiment demonstrates that Swin-CSRNet achieved excellent results with MAE, RMSE, and MAPE and a correlation coefficient R2 of 11.22, 15.32, 5.18%, and 0.954, respectively. Meanwhile, compared to the original network, the parameter size and computational complexity of Swin-CSRNet were reduced by 70.17% and 79.05%, respectively. Therefore, the proposed method not only counts the number of fish with higher speed and accuracy but also contributes to advancing the automation of aquaculture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
修勾完成签到,获得积分10
1秒前
1秒前
2秒前
小蘑菇应助ugk采纳,获得10
2秒前
SciGPT应助向阳采纳,获得10
3秒前
hhh发布了新的文献求助10
4秒前
5秒前
5秒前
思源应助空格TNT采纳,获得10
6秒前
SVEA完成签到,获得积分20
6秒前
丘比特应助MOhy采纳,获得10
6秒前
qxx发布了新的文献求助10
6秒前
9秒前
9秒前
9秒前
tuanheqi应助lixiao采纳,获得60
9秒前
10秒前
脑洞疼应助Nashe采纳,获得10
10秒前
buno应助zhang_23采纳,获得10
10秒前
Ollie完成签到,获得积分10
10秒前
英俊的铭应助秋城采纳,获得10
11秒前
小蘑菇应助小郭采纳,获得10
11秒前
万幸鹿发布了新的文献求助10
11秒前
11秒前
小二郎应助Bismarck采纳,获得10
12秒前
慕青应助xjq采纳,获得10
12秒前
12秒前
ChristineShao完成签到,获得积分20
13秒前
13秒前
13秒前
orixero应助Ollie采纳,获得30
14秒前
14秒前
李健应助无心的可仁采纳,获得10
14秒前
顺心蜜粉应助科研通管家采纳,获得10
15秒前
vlots应助科研通管家采纳,获得30
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233820
求助须知:如何正确求助?哪些是违规求助? 2880284
关于积分的说明 8214616
捐赠科研通 2547734
什么是DOI,文献DOI怎么找? 1377175
科研通“疑难数据库(出版商)”最低求助积分说明 647789
邀请新用户注册赠送积分活动 623197