亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting metformin efficacy in improving insulin sensitivity among women with polycystic ovary syndrome and insulin resistance: a machine learning study

医学 多囊卵巢 二甲双胍 逻辑回归 机器学习 胰岛素抵抗 人工智能 置信区间 支持向量机 体质指数 接收机工作特性 内科学 胰岛素 计算机科学
作者
Jiani Fu,Yiwen Zhang,Xiaowen Cai,Yong Huang
出处
期刊:Endocrine Practice [Elsevier BV]
卷期号:30 (11): 1023-1030 被引量:1
标识
DOI:10.1016/j.eprac.2024.07.014
摘要

ObjectiveMetformin is clinically effective in treating polycystic ovary syndrome (PCOS) with insulin resistance (IR), while its efficacy varies among individuals. This study aims to develop a machine learning model to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR.MethodsThis is a retrospective analysis of a multicenter, randomized controlled trial involving 114 women diagnosed with PCOS and IR. All women received metformin treatment for 4 months. We incorporated 27 baseline clinical variables of the women into the construction of our machine learning model. We firstly compared 4 commonly used feature selection methods to screen valuable clinical variables. Then we used the valuable variables as inputs to evaluate the performance of 5 machine learning models, including k-Nearest Neighbors, Support Vector Machine, Logistic Regression, Random Forest, and Extreme Gradient Boosting, in predicting the efficacy of metformin.ResultsAmong the 5 machine learning models, Support Vector Machine performed the best with an area under the receiver operating characteristic curve of 0.781 (95% confidence interval [CI]: 0.772-0.791). The key predictive variables identified were homeostasis model assessment of insulin resistance, body mass index, and low-density lipoprotein cholesterol.ConclusionThe developed machine learning model could be applied to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR. The result could help doctors evaluate the efficacy of metformin in advance, optimize treatment plans, and thereby enhance overall clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jyy应助科研通管家采纳,获得10
1秒前
jyy应助科研通管家采纳,获得10
1秒前
桐桐应助孙伟健采纳,获得10
1秒前
逗小豆完成签到 ,获得积分10
12秒前
大个应助孙伟健采纳,获得10
13秒前
19秒前
大模型应助孙伟健采纳,获得10
30秒前
36秒前
39秒前
浮浮世世发布了新的文献求助10
43秒前
上官若男应助孙伟健采纳,获得10
1分钟前
上官若男应助孙伟健采纳,获得10
1分钟前
1分钟前
clhoxvpze完成签到 ,获得积分10
1分钟前
烟花应助孙伟健采纳,获得10
1分钟前
1分钟前
SciGPT应助孙伟健采纳,获得10
1分钟前
打打应助孙伟健采纳,获得10
1分钟前
1分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
孙伟健发布了新的文献求助10
2分钟前
孙伟健发布了新的文献求助10
2分钟前
孙伟健发布了新的文献求助10
2分钟前
孙伟健发布了新的文献求助10
2分钟前
孙伟健发布了新的文献求助10
2分钟前
孙伟健发布了新的文献求助10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968433
求助须知:如何正确求助?哪些是违规求助? 3513255
关于积分的说明 11167056
捐赠科研通 3248604
什么是DOI,文献DOI怎么找? 1794280
邀请新用户注册赠送积分活动 874990
科研通“疑难数据库(出版商)”最低求助积分说明 804629