Predicting metformin efficacy in improving insulin sensitivity among women with polycystic ovary syndrome and insulin resistance: a machine learning study

医学 多囊卵巢 二甲双胍 逻辑回归 机器学习 胰岛素抵抗 人工智能 置信区间 支持向量机 体质指数 接收机工作特性 内科学 胰岛素 计算机科学
作者
Jiani Fu,Yiwen Zhang,Xiaowen Cai,Yong Huang
出处
期刊:Endocrine Practice [Elsevier BV]
卷期号:30 (11): 1023-1030
标识
DOI:10.1016/j.eprac.2024.07.014
摘要

ObjectiveMetformin is clinically effective in treating polycystic ovary syndrome (PCOS) with insulin resistance (IR), while its efficacy varies among individuals. This study aims to develop a machine learning model to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR.MethodsThis is a retrospective analysis of a multicenter, randomized controlled trial involving 114 women diagnosed with PCOS and IR. All women received metformin treatment for 4 months. We incorporated 27 baseline clinical variables of the women into the construction of our machine learning model. We firstly compared 4 commonly used feature selection methods to screen valuable clinical variables. Then we used the valuable variables as inputs to evaluate the performance of 5 machine learning models, including k-Nearest Neighbors, Support Vector Machine, Logistic Regression, Random Forest, and Extreme Gradient Boosting, in predicting the efficacy of metformin.ResultsAmong the 5 machine learning models, Support Vector Machine performed the best with an area under the receiver operating characteristic curve of 0.781 (95% confidence interval [CI]: 0.772-0.791). The key predictive variables identified were homeostasis model assessment of insulin resistance, body mass index, and low-density lipoprotein cholesterol.ConclusionThe developed machine learning model could be applied to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR. The result could help doctors evaluate the efficacy of metformin in advance, optimize treatment plans, and thereby enhance overall clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lilinuusss完成签到,获得积分10
1秒前
明理迎曼发布了新的文献求助10
1秒前
赘婿应助suda采纳,获得10
2秒前
科目三应助sisi采纳,获得10
3秒前
负责的千易完成签到,获得积分10
4秒前
莫岸发布了新的文献求助10
4秒前
沉默的便当完成签到,获得积分10
5秒前
chadzhu发布了新的文献求助10
5秒前
冷艳醉山完成签到,获得积分10
7秒前
隐形曼青应助大力的海蓝采纳,获得10
7秒前
爆米花应助冷傲天川采纳,获得10
9秒前
10秒前
领导范儿应助Macarsa采纳,获得20
12秒前
十月发布了新的文献求助10
13秒前
chadzhu完成签到,获得积分20
14秒前
14秒前
15秒前
科研小民工应助Can采纳,获得500
16秒前
隐形曼青应助xueshu小裁缝采纳,获得10
16秒前
17秒前
18秒前
英俊的铭应助如沐春风采纳,获得10
19秒前
李健的粉丝团团长应助cumt采纳,获得30
19秒前
19秒前
suda发布了新的文献求助10
20秒前
杨自强完成签到,获得积分10
20秒前
Owen应助Ingram采纳,获得50
20秒前
完美世界应助nav采纳,获得10
20秒前
21秒前
顾矜应助杨春天采纳,获得10
21秒前
bai完成签到 ,获得积分10
23秒前
23秒前
NSS发布了新的文献求助10
23秒前
23秒前
十月完成签到,获得积分10
24秒前
优秀怀梦发布了新的文献求助10
24秒前
25秒前
chrissylaiiii发布了新的文献求助10
25秒前
西西完成签到,获得积分10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672805
求助须知:如何正确求助?哪些是违规求助? 3228883
关于积分的说明 9782581
捐赠科研通 2939308
什么是DOI,文献DOI怎么找? 1610843
邀请新用户注册赠送积分活动 760758
科研通“疑难数据库(出版商)”最低求助积分说明 736203