肌球蛋白
内科学
激活剂(遗传学)
收缩(语法)
心脏病学
化学
内分泌学
医学
生物物理学
生物
生物化学
受体
作者
Joo Hee Choi,P. Wood,Joshua B. Holmes,Katherine L. Dominic,Cristobal G. dos Remedios,Kenneth S. Campbell,Julian E. Stelzer
出处
期刊:American Journal of Physiology-heart and Circulatory Physiology
[American Physical Society]
日期:2024-10-25
标识
DOI:10.1152/ajpheart.00252.2024
摘要
The second-generation myosin activator danicamtiv (DN) has shown improved function compared to the first generation myosin activator omecamtiv mecarbil (OM) in non-failing myocardium by enhancing cardiac force generation but attenuating slowed relaxation. However, whether the functional improvement with DN compared to OM persists in remodeled failing myocardium remain unknown. Therefore, this study aimed to investigate the differential contractile response to myosin activators in non-failing and failing myocardium. Mechanical measurements were performed in detergent-skinned myocardium isolated from donor and failing human hearts. Steady-state force, stretch activation responses, and loaded shortening velocity were analyzed at submaximal [Ca 2+ ] in the absence or presence of 0.5 µmol/L OM or 2 µmol/L DN. The effects of DN and OM on Ca 2+ -sensitivity of force generation were determined by incubating myocardial preparations at various [Ca 2+ ]. The inherent impairment in force generation and cross-bridge behavior sensitized failing myocardium to the effects of myosin activators. Specifically, increased Ca 2+ -sensitivity of force generation, slowed rates of cross-bridge recruitment and detachment following acute stretch, slowed loaded shortening velocity, and diminished power output were more prominent following treatment with OM or DN in failing myocardium compared to donor myocardium. Although these effects were less pronounced with DN compared to OM in failing myocardium, DN impaired contractile properties in failing myocardium that were not affected in donor myocardium. Our results indicate that similar to first-generation myosin activators, the DN-induced slowing of cross-bridge kinetics may result in a prolongation of systolic ejection and delayed diastolic relaxation in the heart failure setting.
科研通智能强力驱动
Strongly Powered by AbleSci AI