Machine-learning based prediction of obstructive coronary artery disease using integrated submodules of clinical information, chest x-ray, and electrocardiography

医学 冠状动脉疾病 心电图 心脏病学 内科学 放射科
作者
Ran Heo,S J Park,Young‐Hyo Lim
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.1350
摘要

Abstract Background The early diagnosis of obstructive coronary artery disease (CAD) is critical. However, delays in diagnosis may occur due to subsequent high-cost tests, contributing to substantial medical expenses. A more insightful interpretation of fundamental diagnostic tools, such as chest x-ray (CXR) and electrocardiography (ECG), could mitigate medical costs and facilitate a timely diagnosis. Purpose This study explores the application of machine learning to interpret each modality and create a consolidated prediction model for significant CAD, aiming to construct a diagnostic model based on primary tests, including CXR, ECG, and clinical information. Methods Clinical information-ECG-CXR paired data were generated from 19,140 patients, with CAD confirmed through coronary angiography (CAG). Machine learning (ML) was employed to develop submodules for each modality, and various integration methods were explored. The area under the curve (AUC) served as the outcome metric for predicting obstructive CAD. Results The development set comprised data from 17,976 patients, with CAG-confirmed obstructive CAD observed in approximately 60% of patients. The obstructive CAD group exhibited characteristics such as advanced age, male predominance, a higher prevalence of chest pain, and more risk factors. The ML model, incorporating clinical information, CXR, and ECG with submodules, demonstrated the optimal prediction of obstructive CAD (AUC 0.722). This model significantly outperformed the model without submodules (0.722 vs. 0.638, p<0.0001) in obstructive CAD prediction. Conclusions Through the integration of submodules encompassing clinical information and basic tests, leveraging a high-quality database, the integrated ML algorithm offers improved prediction capabilities for CAG-confirmed obstructive CAD. This underscores the potential role of machine learning in clinical decision-making based on diverse modalities with distinct characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只羊发布了新的文献求助10
刚刚
1秒前
充电宝应助调皮的海之采纳,获得10
2秒前
2秒前
大气的草莓完成签到,获得积分10
4秒前
Nes发布了新的文献求助10
4秒前
温柔蓝天发布了新的文献求助10
4秒前
脑洞疼应助Nut采纳,获得10
4秒前
hhhhhhw完成签到,获得积分20
5秒前
JamesPei应助A001采纳,获得10
5秒前
5秒前
99发布了新的文献求助10
5秒前
6秒前
bingo完成签到,获得积分10
7秒前
红叶应助啦啦咔嘞采纳,获得10
7秒前
Wink14551发布了新的文献求助10
7秒前
1234完成签到,获得积分10
8秒前
yihoxu完成签到,获得积分10
8秒前
燕知南完成签到,获得积分10
8秒前
DY发布了新的文献求助10
10秒前
我是老大应助Nes采纳,获得10
10秒前
dyan发布了新的文献求助30
12秒前
CipherSage应助机智匕采纳,获得30
12秒前
13秒前
Zeo发布了新的文献求助30
13秒前
14秒前
万能图书馆应助xiao采纳,获得10
15秒前
张鑫完成签到,获得积分10
16秒前
LFJ发布了新的文献求助30
17秒前
17秒前
18秒前
一木张完成签到,获得积分10
19秒前
天天快乐应助夏夏采纳,获得10
19秒前
19秒前
ZhouTY完成签到,获得积分10
20秒前
禾13完成签到,获得积分10
21秒前
wonderwander发布了新的文献求助10
21秒前
满意代灵发布了新的文献求助10
21秒前
月涵完成签到 ,获得积分10
21秒前
nimonimo完成签到,获得积分10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740489
求助须知:如何正确求助?哪些是违规求助? 3283290
关于积分的说明 10034940
捐赠科研通 3000165
什么是DOI,文献DOI怎么找? 1646430
邀请新用户注册赠送积分活动 783550
科研通“疑难数据库(出版商)”最低求助积分说明 750411